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Summary

1. Network analysis is widely used in diverse fields and can be a powerful framework for studying

the structure of biological systems. Temporal dynamics are a key issue for many ecological and evo-

lutionary questions. These dynamics include both changes in network topology and flow on the net-

work. Network analyses that ignore or do not adequately account for the temporal dynamics can

result in inappropriate inferences.

2. We suggest that existing methods are currently under-utilized in many ecological and evolution-

ary network analyses and that the broader incorporation of these methods will considerably

advance the current field. Our goal is to introduce ecologists and evolutionary biologists interested

in studying network dynamics to extant ideas and methodological approaches, at a level appropri-

ate for those new to the field.

3. Wepresent an overview of time-ordered networks, which provide a framework for analysing net-

work dynamics that addresses multiple inferential issues and permits novel types of temporally

informed network analyses. We review available methods and software, discuss the utility and con-

siderations of different approaches, provide a worked example analysis and highlight new research

opportunities in ecology and evolutionary biology.
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Introduction

Network analysis is of current and growing importance in

diverse fields including ecology and evolutionary biology.

Many biological systems consist of interconnected units and

can be usefully modelled as networks, which are mathematical

constructs describing a set of edges between vertices (Albert &

Barabasi 2002; Proulx, Promislow & Phillips 2005; Diestel

2010; Newman 2010). The identity of each varies with the

system and question of interest – for example, vertices can be

genes, proteins, neurons, individual organisms, species,

geographic regions, etc. and edges can represent regulatory

interactions, binding affinities, synapses, social associations,

predation, gene flow and so on (Dunne, Williams & Martinez

2002; Proulx, Promislow & Phillips 2005; May 2006;

Bascompte & Jordano 2007; Wey et al. 2008; Sih, Hanser &

Mchugh 2009; Bascompte 2010). Network topology refers to

the structure of edges and vertices and can be quantified with a

range of statistics about the pattern of connections among

vertices. Processes of flow can occur on these edges, repre-

senting transfers of resources, disease, information, etc.

Network theory provides a basis for analysing outcomes that

depend on network topology or flow and is thus a powerful

framework for testing hypotheses about biological interactions

bymeasuring and comparing network variation.

Questions of network dynamics are of key interest for many

ecological and evolutionary systems, for example, how and

why the topology of the network changes over time, how these

changes affect the flow of resources (or disease) through the

network, and the nature and importance of feedbacks between

flow processes and topological change. However, network

dynamics can be quantitatively challenging and difficult to

address and are largely unaccounted for in most extant net-

work analyses (James, Croft & Krause 2009; Sih, Hanser &

Mchugh 2009; Bascompte 2010).

In the current standard framework, networks are usually

taken as representations of a system aggregated over a certain

limited time interval. It is difficult to ask questions about how

and why a system changes over time using this static abstrac-

tion, which is based on several critical assumptions. Specifi-*Correspondence author. E-mail: bblonder@email.arizona.edu
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cally, this approach assumes that the network’s topology is

fixed; processes of flow are at a dynamic steady state; edges

represent persistent interactions; interactions are sufficiently

stable to address the question of interest; and there is sufficient

sampling so that the structure of the network is accurately and

completely known. Together, these assumptions imply that the

chosen representation of interactions is sufficient to evaluate

equilibrium situations, but breaking them, which occurs in

many real networks, can lead to a range of serious inferential

problems (Box 1). Many networks involve dynamics but have

so far been analysed usingmethodsmore appropriate for static

systems. Thus, while these assumptions permit some simple

and fast analyses, an explicitly dynamic approach can be more

useful.

Here, we review current approaches that address the need

for incorporating temporal dynamics into network analysis of

observational data in ecology and evolutionary biology. Our

goal is to introduce ecologists and evolutionary biologists

interested in network dynamics but thatmay currently be unfa-

miliar with the concepts and techniques already available. We

survey basic concepts that are important in dynamic network

analysis as well as recent advances in a range of disciplines and

their applications in ecology and evolutionary biology. Fur-

thermore, we discuss considerations in determining the appro-

priate network representations for the dynamics of interest and

highlight important ecological and evolutionary questions that

can be understood as network dynamics questions at different

time-scales. These concepts are brought together via the time-

Box 1. Common inferential problems can arise when different time-scales are important to networks. Here, we highlight four common types of

problems.

a. Standard static network analyses measure a set of interactions with the implicit assumption that edges in a network are permanent

associations. If instead, interactions are brief, rarely connected vertices may appear connected more often than they should be,

changing the topology of the network. Varying the window over which to aggregate interactions into a network can produce a

range of topologies and resulting inferences. Too short of a window, and no individuals are connected; too long of a window, and

perhaps all individuals incorrectly appear connected (James, Croft & Krause 2009; Blonder & Dornhaus 2011). Alternatively,

weighting edges by interaction probabilities can represent true levels of connectivity.

b. If networks change more rapidly than an investigator samples (e.g. if the dashed edge in the illustration changes state during sam-

pling of interactions), dramatic changes in topological dynamics can occur (Stumpf, Wiuf & May 2005; de Silva et al. 2006;

Franks et al. 2009). Edges may not be persistent, well defined or adequately sampled at the time-scales of interest.

c. Simulated removal or addition of edges and vertices often neglect topological dynamics of a network. Investigators may incor-

rectly assume that networks do not change their structure in response to a perturbation (Albert, Jeong & Barabasi 2000). Many

networks rewire edges in response to perturbation, potentially even at time-scales relevant to flow dynamics. Removal simulations

that do not include rewiring should be considered critically if rewiring could occur at relevant time-scales.

d. The ordering of events is important to flow dynamics on a network and can affect inference about resource flow processes. Interac-

tions that are aggregated into a network may suggest that individuals are connected to each other. However, the ordering and tim-

ing of interactions imply that some paths are causally impossible, and some paths that appear short in terms of number of edges

may be long in time delay (Holme 2005; Chan, Holmes & Rabadan 2010; Blonder & Dornhaus 2011). In this example, the short-

est-length path from A to D is A-B-D, but the shortest-time path is actually A–B–C–D. Also, until Saturday, A can spread a

resource to D, but D cannot spread a resource to A. Neither inference is possible without knowledge of the ordering of events.
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ordered network framework, which unifies dynamics at multi-

ple time-scales, resolves common inferential problems and

enables many new types of analyses. We provide a guide to

time-ordered network analysis that includes computational

resources, work through an example application and identify

research areas where this frameworkmay be valuable.

Two types of dynamics: topology and flow

Our concept of the network, and what it represents, depends

on two key types of dynamics: flow processes on the network

and changes in the underlying topology of the network. Flow

dynamics are how resources, contacts, information, disease,

etc. are propagated between network vertices, for a given set of

vertices and edges. Topological dynamics are how the network

structure changes through variation in the identity or weight of

edges (sometimes known as ‘rewiring’). Systems may exhibit

one or both types of dynamics, and questions of interest will

determine the appropriate focus. For example, evolutionary

and seasonal changes in the interactions between multiple

species in a pollination network (Bascompte & Jordano 2007;

Petanidou et al. 2008) are topological dynamics. Alternatively,

resource exchanges between plants and animals (e.g. biomass

in a food web (Jarre-Teichmann & Pauly 1993) or disease in a

population (Rothenberg et al. 1998)) would represent flow

dynamics.

The relative times-cales of underlying processes can be

important to understanding both topological and flow dynam-

ics. Topology can influence flow, and also flow can influence

topology. If both are occurring on a similar time-scale, feed-

backs between the two may exist. In the example of disease

transmission on a social network, contracting the disease (the

result of flow processes) can result in changes to interactions

with others (Croft et al. 2011a), either through changes in the

sick individual’s behaviour or through changes in response of

others to that individual and thus to the topology of the net-

work (Fefferman&Ng 2007; Bansal et al. 2010; Romano et al.

2010). Networks that exhibit coupling and strong feedback

between the two time-scales are sometimes considered ‘adap-

tive’ or ‘co-evolutionary’ (Gross &Blasius 2008).

Time-ordered networks as a unifying
framework

A framework for analysing network dynamics that unifies

topology and flow dynamics is available through the concepts

of time-ordered networks and time-aggregated networks

(Kempe, Kleinberg & Kumar 2002). Both types of networks

can be used to study different aspects of topological and flow

dynamics, as shown below. This framework encompasses

many extant approaches to network dynamics and can be used

not only to avoid the critical issues discussed earlier (Box 1)

but also to enable novel and temporally informed analyses.

References to extant studies, computational tools and future

opportunities are organized thematically in Table 1 and cited

from within the text. Additionally, the free R package ‘timeor-

dered’ implements many of these analyses, using any data that

list the identities of vertices and edge occurrence time for each

interaction. We provide an example analysis of ant colonies

using time-ordered networks that highlights the power of this

framework (Box 3).

TIME-ORDERED NETWORKS

Formany network phenomena, the order, duration and timing

of events can be critical (Box 1d) (Moody 2002). Time-ordered

networks represent data observed for a set of interactions that

occur at certain times, thereby retaining complete information

on the ordering, duration and timing of events. Graphically,

vertices in a time-ordered network can be represented as a ser-

ies of static networks with edges distributed over the time

dimension. Vertices always move forward in time, and edges

between vertices are visualized as arrows drawn at the start

and stop time steps for an interaction (Box 2a). The arrows

can be bidirectional if the interaction is undirected (i.e. A inter-

acts with B implies B interacts with A). Thus, the time-ordered

network is a complete record of all observed interactions at all

time points which describes all flow and topology changes.

Time-ordered networks have also been called temporal net-

works (Holme & Saramäki 2011), temporal graphs (Kostakos

2009), dynamic networks (Carley 2003; Lahiri et al. 2008) or

dynamic graphs (Berger-Wolf & Saia 2006).

Mathematically, time-ordered networks are directed acyclic

graphs (Diestel 2010). In the graph, a ‘temporary vertex’ is cre-

ated at the start and stop time for each interaction and assigned

a label corresponding to the identity of the corresponding ver-

tex in the static network. Thus, in the time-ordered network, a

single vertex in a static network (e.g. Individual 1) will be repre-

sented by multiple ‘temporary vertices’ (e.g. Individual 1, at

time t1; Individual 1, at t2). Next, an edge is created between

‘temporary vertices’ at the start and stop time of each interac-

tion, and a directed edge is created that connects the ‘tempo-

rary vertex’ to itself at the stop time for one interaction and the

start time for the next interaction. If certain vertices do not

exist at some time points, the investigator may choose to either

keep the vertex in the network without recording any further

interactions (e.g. an animal that has temporarily left the area of

observation) or instantiate a new time-ordered network with-

out this vertex being present (e.g. an animal that has died and

will never interact again). The latter approach may be more

appropriate when using statistics such as the network diameter

that are sensitive to global connectivity or extra zeros.

Time-ordered networks can be used to answer many

descriptive questions about flow dynamics (Table 1, F2). For

example, how fast (if at all) can a resource propagate from

one vertex to another? Determining these causally permitted

pathways of resource flow is possible with time-ordered net-

works by tracing any line that follows a non-decreasing path

in time (Kempe, Kleinberg & Kumar 2002). An example is

shown as a dotted yellow line in Box 2a. In Box 1d, we show

how for several apparently connected vertices, A can trans-

mit a resource to C via B only by interacting with B before

B interacts with C. Similarly, bounds on resource flow can

be determined by determining shortest-time or shortest-

960 B. Blonder et al.
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unique-vertices paths between individuals. For example, a

question like ‘At least how many unique individuals does a

resource pass through when moving from A to C?’ is impor-

tant for questions about network efficiency or the impor-

tance of certain individuals in determining resource flow.

One can also identify key vertices for resource-spreading pro-

cesses by computing standard network metrics on a time-

ordered network (Table 1, F3). For example, a high

betweenness centrality of a ‘temporary vertex’ (number of

shortest paths in the network passing through this vertex)

indicates that this vertex mediates many resource flow paths

at this time point.

Summary statistics of time-ordered networks also provide

insight into dynamic properties of the system (Table 1, F4,

C1). These metrics can be made explicitly dependent on abso-

lute time and time intervals and thus can provide more insight

into processes underlying networks than static metrics. One

useful metric is themean time delay between two randomverti-

ces over a certain time window. For example, a short average

time for resource flows between some individuals may indicate

membership in a common group, or identifying an individual

through which many shortest-unique-vertices paths pass can

indicate that this individual plays a preferred role in mediating

resource flows. Also, if this time delay is only short for the first

half of the data collection interval and later becomes longer,

we may conclude that the underlying dynamic process is

changing; this group no longer plays a preferred role in

resource flow processes. We further describe applications of

such statistics in the worked example (Box 3). Note that the

details of resource flow on the time-ordered network should

depend on the resource type – for example, some resources like

food are passed on but not retained while others like disease

are passed on and retained. This means that the dynamics of

resource flow processes may shift from a transfer to a broad-

cast process. Using the correctmetric for each type of flow pro-

cess is critical; we refer the reader to (Borgatti 2005) for a

comprehensive perspective on this issue.

Simulations or observations of flow dynamics occurring on

networks with fixed topology can be described using time-

ordered networks (Table 1, F4, C2). For a network with fixed

topology whose edges represent potential interactions that

depend on the details of the system, the occurrence and order-

ing of actual interactions can be completely described by a

time-ordered network. The approaches described in previous

sections can then be used to make time-dependent descriptions

and inferences about the system. This approach may also be

valuable for individual-based or cellular automata models

(Wolfram 2002) where network topology is fixed – for exam-

ple, in a cellular automata model of pollen flow between multi-

ple patches with unchanging connectivity, one could simulate

the activity of different pollen carriers and test the hypothesis

that plants with more conspecific neighbours had higher rates

of resource flow.An area of active application is in social learn-

ing, where network-based diffusion analysis (Franz & Nunn

2009; Hoppitt, Boogert & Laland 2010) is used to assess how

the social structure of a group predicts the rate of acquisition

of a new behaviour in group members. This general approachT
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of fittingmultiple competingmodels of flow on a fixed network

to observed patterns of flowwould likely be applicable in other

areas.

Similarly, proximity networks have been another valuable

area for the application of time-ordered networks (Table 1,

C4). These networks are relevant to a wide range of animal

groups because they describe interactions between mobile

individuals (vertices) where edges are created when individu-

als are near each other and are destroyed as individuals

move apart. Here, time-ordered networks can describe

group dynamics, and observed data can be easily compared

to networks constructed from null models of individuals’

motion.

Time-ordered networks can also provide insight into pat-

terns in the processes of network rewiring after perturbation

by detecting new temporally variable or persistent structures

or by characterizing changes in flow (Table 1, C3). For exam-

ple, in a food web, energy flows may appear to become more

compartmentalized during some seasons (Jarre-Teichmann &

Pauly 1993); time-ordered network analyses can provide a rig-

orous test of this hypothesis.

Most powerfully, time-ordered networks enable new types

of null modelling of both topological and flow dynamics that

permit inferences to be made (Table 1, F1). Resampling of

time-ordered networks is a powerful approach in which certain

correlations within observed data are randomized while others

are preserved – for example, identities of interaction partners

or times of interactions. This approach is useful for under-

standing the processes controlling a network phenomenon and

for hypothesis testingwithout needing tomeet the assumptions

of more standard statistics (Franks et al. 2009; James, Croft &

Krause 2009; Karsai et al. 2010). For example, one can deter-

mine whether resources flow between two vertices significantly

faster than expected by simulating a large set of networks that

differ from the observed data only by randomization of the

times at which interactions were observed. If the observed

shortest path length between the focal vertices is indeed shorter

than in some fraction (e.g. 95%) of the simulated networks,

then there are processes causing temporal correlations between

interactions. As with any re-sampling procedure, investigators

must be careful to break only correlations in the structure of

interest while maintaining all other structures in the data set

(Holme 2005). We show how these approaches can be applied

in the worked example (Box 3).

T IME-AGGREGATED NETWORKS

A benefit of time-ordered networks is that they can be flexibly

decomposed into multiple time-aggregated networks based on

selected time windows, which can be analysed with standard

Box 2. Time-ordered and time-aggregated networks provide complementary approaches to describing networks andmaking inferences.

a. Time-ordered networks capture all observed data for network dynamics. Vertices move forward in time and are connected by edges

at different times, enabling simultaneous visualization of network topology and flow.

b. Time-aggregated networks are time-ordered networks that have been collapsed to include the interactions that occur within certain

time windows.

c. Both types of networks can be used for a range of analyses including resource flow simulations, changes in statistics over time and

window size and hypothesis testing of different models for underlying dynamics.
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T
im

e

Vertex

A B C D E 

E A 

D 

C 

B 

E A 

D B 

E A 

D B 

C 

C 

M
ea

n 
fr

ac
tio

n 
of

 
ve

rt
ic

es
 r

ea
ch

ed
 

by
 r

es
ou

rc
e 

flo
w

Time

M
ea

n 
de

gr
ee

(e
dg

es
/v

er
te

x)

Time

Large window size

Small window size

Li
ke

lih
oo

d 
of

 
to

po
lo

gi
ca

l d
yn

am
ic

s

Model 1 Model 2

(a) (b) (c)

964 B. Blonder et al.

� 2012 The Authors. Methods in Ecology and Evolution � 2012 British Ecological Society, Methods in Ecology and Evolution, 3, 958–972



methods. Essentially, this approach reduces the time-ordered

data into a series of static networks. To generate time-aggre-

gated networks, one subsets the time-ordered network at differ-

ent start and stop time points and then projects along the time

axis to retain any interactions that begin or stopwithin thewin-

dow (Clauset & Eagle 2007) (Box 2b). They are sometimes

called panels, waves, or longitudinal data (Robins et al. 2007;

Snijders, Van de Bunt & Steglich 2010). Time-aggregated net-

works are identical to the networks studied using standard

approaches, except that they are associated with a given win-

dow of time. This explicit consideration of time allows one to

directly investigate how this time window impacts inferences

about the network (Yeung et al. 2011). Nearly, all extant net-

work data are time aggregated.

Using time-ordered networks to generate time-aggregated

networks lets us study topological dynamics by redefining net-

Box 3. An example analysis using time-ordered (a–c) and time-aggregated (d–f) networks. Many common questions can be quickly answered

using network dynamics approaches. Here, we use data from a study of interactions between individually marked Temnothorax rugatulus ants

(Blonder & Dornhaus 2011). The code for these analyses uses the timeordered R package which is available from http://cran.r-project.org/web/

packages/timeordered/index.html.

a. The interactions between ants can be visualized as a time-ordered network. Shortest-length paths for resource flow can be easily

calculated; one such path between two individuals is shown in red.

b. Resource flows can be traced. Here, resources are simulated as being transferred during every interaction. The hypothesis that

resources originating from the ant queen spread significantly faster than those from worker ants is falsified (P = 0Æ23) by compar-

ing the distributions of the ‘fraction of workers reached’ at Dt = 1000 s.

c. The effect of time-ordered network structure on network statistics can be quantified. For example, the importance of the ordering

of events to time delays for resource flows can be measured by calculating the observed network-mean vector clock latency at

t = 1440 s and comparing it to the distribution of latencies for a network where the ordering of interactions has been resampled.

Here, the observed network has significantly greater latencies (P = 0 for 1000 randomizations) than the networks with random

ordering of interactions, indicating that network structure retards the flow of resources.

d. The time-ordered network can be collapsed to several time-aggregated networks; here, nine networks with the same size of time

window are shown.

e. Network statistics can be computed for different sets of time-aggregated networks. Here, the degree distribution is shown for the

nine networks shown above (left), four networks with larger time windows (centre) and one network whose time window spans the

observation period (right). The observed properties of the degree distribution are highly sensitive to the time interval and window

size, potentially changing inferences.

f. Time-series analyses of time-aggregated network statistics can be used for hypothesis testing or pattern identification. Here, colony

activity level is hypothesized to drive network closeness centrality. The cross-correlation between these time series is highest

(q = 0Æ91) at zero time-lag, indicating a potentially strong and immediate causal relationship between activity level and closeness

centrality.
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work statistics as functions of time window or of total aggrega-

tion time. In Box 2c, we have sketched three examples: a

resource flow metric (fraction of vertices reached at a given

time delay), a topological metric (mean degree on each time-

aggregated network, for two different window sizes) and a like-

lihood-based comparison of two models for underlying topo-

logical dynamics. The dynamics of these time-aggregated

networks can then be analysed at multiple time points. Investi-

gators can then use existing network statistics that have been

made explicitly time dependent (Blüthgen, Menzel & Blüthgen

2006; Fefferman &Ng 2007; Yeung et al. 2011) – for example,

mean degree (edges per vertex) as a function of time and win-

dow size (Box 2c). For example, in an animal social network, a

consistently high diameter (the longest minimum-length path

between any two individuals) may indicate an un-mixed popu-

lation, while an oscillating diameter might indicate fission–

fusion dynamics. Similarly, observing asymptotic behaviour of

statistics over increasing window size (Holme 2005; Leskovec,

Kleinberg & Faloutsos 2005) can also provide insight into

underlying dynamics of a system.

Time-dependent network statistics are also useful for assess-

ing changes in topology or topological dynamics in response to

an external factor (Table 1, T1, C1) – for example, climate

change or experimental perturbation. Besides being of theoret-

ical interest for understanding how populations evolve, these

questions have applied implications in the face of accelerated

anthropogenic changes. Here, standard time series and regres-

sion methods should be used to relate network statistics of

time-ordered or time-aggregated networks to these external

factors (Madden & Clutton-Brock 2009). One could assess a

system’s responsiveness bymeasuring time delays between per-

turbation and the response of a network statistic using the

cross-correlation between time series, or detect periodic behav-

iour in a system using Fourier analysis to compute the spectral

density of the network statistic’s time series. For example,

aquatic food webs can show multi-year time delays between

forcing because of fishing and response in network topology

(Walters, Christensen & Pauly 1997). A related approach

enables the determination of cause and effect in these net-

works. Using the formalism of Granger causality (Table 1,

T2), one can construct time series of network statistics and use

them to determine whether one set of events causes another set

of events. This approach may be very useful for detecting

sources of variation in apparently complex networks.

Model selection and hypothesis testing (inference of the

underlying rules for dynamics) are now possible (Table 1, T3).

Resampling methods for time-ordered networks have been

described in the previous section and can also be used with

multiple time-aggregated networks (Croft et al. 2011b). For

example, consider a set of time-aggregated networks describing

social interactions between animals. One could test whether

themean degree of one group of vertices (e.g. themales) is con-

sistently significantly higher than in another group (e.g. the

females) at multiple time points by randomizing the identities

of all vertices in each time-aggregated network and comparing

the randomized mean degree for each group to the observed

values. Instead, to test whether this mean degree changed over

time for each group, one could compare observed degrees to

those found in networks where interaction times had been ran-

domized across all time-aggregated networks.

More advanced inference tools for time-aggregated net-

works also exist (Table 1, T3). The new field of stochastic

actor-based models (Snijders, Van de Bunt & Steglich 2010)

(and their extension to temporally variable situations

(Hanneke & Xing 2009)) will be highly useful for inference

because of its strong statistical basis. In these models, the time-

aggregated network’s future state is the outcome of a Markov

process depending on both the state of the network, the state

of variables associated with each vertex and also of variables

associated with each pair of vertices. The network evolves as

probabilistically selected vertices independently rewire their

edges. The parameters associated with this rewiring are

allowed to change over different time intervals. For example,

animal behaviour investigators might ask whether certain indi-

viduals preferentially interact with other individuals that have

more extant connections and also avoid less-connected individ-

uals. Alternatively, we can also predict the network’s future

state or ask whether there are frequent causal linkages

(Table 1, T2). The detection of periodic or frequent temporal

structures is an area of ongoing research with many usable

tools. For example, does A interacting with B always imply

that B subsequently interacts withC?Or are A, B andC consis-

tently connected to each other via triangle motifs (Alon 2007)?

These developing approaches are available in ready-to-use

software packages and provide a strong basis for understand-

ing process in network dynamics (Berger-Wolf, Tantipathana-

nandh & Kempe 2010; Lahiri & Berger-Wolf 2010;

Wackersreuther et al. 2010; Kovanen et al. 2011). An advan-

tage of these actor-drivenmodels is that they enable the investi-

gator to assess the relative contribution of different network

attributes to the overall network’s structure and dynamics and

the comparison of different hypotheses for network dynamics

(Snijders, Koskinen & Schweinberger 2010). However, analy-

sis of weighted networks is currently not possible, so the issue

of choosing a timewindow for aggregation remains relevant.

Lastly, time-aggregated networks can be used to identify

community structure within a network. Methods do exist to

detect community structure within a single-static network

(Newman 2010), but more robust approaches using multiple

time-aggregated networks (Table 1, T4) can detect groups that

are persistent over several time intervals and identify individu-

als that leave or join each group. Thus, these methods make it

possible to assess the dynamics of groups – their membership,

formation and dissolution – across time points, with applica-

tions for a range of questions. For example, one can measure

the stability of different animal groups (e.g. politicians (Mucha

et al. 2010)) or empirically identify ecological guilds that are

consistent over multiple seasons. However, a limitation of

these methods is that the available approaches come with a

diverse set of assumptions. Some approaches automatically

determine the number of groups in the data, while others

require the investigator to specify this parameter. Thus, a range

of results can be obtained from different community detection

algorithms.
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CONSIDERATIONS FOR BOTH KINDS OF NETWORKS

A strength of time-ordered and time-aggregated networks is

that the temporal dependence of network-based inference is

made explicit. For time-aggregated networks, different conclu-

sions will necessarily be reached depending on the particular

time window over which interactions are aggregated and the

size of that window (compare Box 1a). Thus, determining the

appropriatewindowused to define a network is critical. Choos-

ing the correct window size can be done bymeasuring lag times

between association events (lagged association rates)

(Whitehead 1997, 2009; Clauset & Eagle 2007). Alternatively,

window size can be chosen by determining when time series of

network statistics constructed from different temporal subsets

of the data become stationary(Sulo, Tanya & Robert 2011). A

final approach is to use prior knowledge about natural time-

scales in the system (Lahiri et al. 2008; Cattuto et al. 2010): for

example, for a pollinator network, 1 year may be a natural

window size if the network re-forms annually, but 1 day may

be a betterwindow size if seasonal changes in interactions occur

(Baldock et al. 2010). If the investigator believes the network is

at a dynamic steady state, it could be appropriate to use a very

longwindow size andweighted edges corresponding to interac-

tion probabilities. This could be necessary, for example, in

animal societies where all individuals can interact with all other

individuals but some interactions are always more likely

(Blonder & Dornhaus 2011). Unfortunately there is currently

no consensus on the bestmethod for choosing awindow size.

Time-ordered networks highlight the need to assess the

importance of investigator sampling rate to observed network

properties (Blüthgen 2010) (compare to Box 1b). Networks

can be very sensitive to missing data (Fletcher et al. 2011), and

there are currently nowidely agreed-uponmethods for correct-

ing sampling issues (Stumpf, Wiuf &May 2005; Kim & Jeong

2007) although some approaches work better than others

(Kurant, Markopoulou & Thiran 2011; Maiya & Berger-Wolf

2011). Many studies have shown that common topological

and flow statistics may have both high variance and bias when

networks are not completely sampled (Kossinets 2006; de Silva

et al. 2006). This problem may also arise when sampled edge

weights do not converge to a central value – that is, when the

underlying process generating these networks changes in time.

While it is not possible to avoid this problem, time-ordered

networks make it possible to detect insufficient sampling via

rarefaction procedures. Consider a statistic of interest, com-

puted from a time-ordered network. Rarefy the network by

randomly removing individual edges. If the statistic of interest

does not converge to a fixed value, the number of randomly

removed edges decreases (i.e. the amount of rarefaction

reaches zero), then one should be wary of analysing the data

as-is and instead increase the sampling rate (Clauset & Eagle

2007). For example, in a study of resource flow between

animals, a time-aggregated network diameter that does not

converge under rarefaction indicates that edges that could

dramatically change network connectivity are being under-

sampled. One approximate rule based on the Shannon–

Nyquist sampling theorem (Shannon 1949) is to ensure

sampling rates are at least twice that of the fastest dynamics of

interest. More recent work on graph entropy rates (a metric of

the difference from random of the information in a graph) pro-

vides a formal approach to determine the minimum sampling

rate required to ensure that the information lost does not

exceed an investigator-specified bound (Haddadi et al. 2011).

Applications and opportunities for network
dynamics

Network dynamics are relevant to a range of research ques-

tions in ecology and evolutionary biology.We have reviewed a

shared set of conceptual issues, common problems and meth-

odological solutions centred on network dynamics, and have

proposed an observational data-driven framework based on

time-ordered networks. The power of this framework lies in its

ability (i) to transform observed or simulated interaction data

into mathematical structures that describe dynamics at multi-

ple time-scales, (ii) to highlight the temporal issues that are rel-

evant to these questions, and (iii) to open a large number of

research questions to a unified set of descriptive and inferential

statistics. Note that this framework does not propose explicit

mathematical models for processes generating network

dynamics (e.g. as used in epidemiology (Bansal et al. 2010;

Pinar, Seshadhri & Kolda 2011; Seshadhri, Pinar & Kolda

2011)) – rather, it provides a common mathematical and

statistical language for networks based on real data that can

then be studied in the context of thesemodels.

Several research areas show high potential for the applica-

tion of this framework, which we have surveyed in Table 1.

For example, the structure of transport networks found in

many organisms (Heaton et al. 2010; Katifori, Szöll}osi &

Magnasco 2010; Tero et al. 2010) is rarely examined with

methods from network dynamics. A time-ordered network

perspective would be useful for assessing processes of network

growth and development and for comparing properties of net-

works across organisms. Secondly, time-ordered networks

could be used to understand species coexistence by providing a

framework for testing hypotheses about changes in connectiv-

ity over time and for predicting future interactions between

species. Although a network dynamics perspective has been

used in studying spatial effects related to landscape fragmenta-

tion andmetapopulations (Urban&Keitt 2001; Dale &Fortin

2010), many research opportunities remain. For example,

community assembly could be studied using time-ordered net-

works constructed from paleo-records of temporally resolved

species interactions and co-occurrence. Third, understanding

how to directly control network dynamics will also have many

practical implications (Table 1, C5). The control theory of net-

work dynamics provides principles to obtain and maintain a

desired future network state through targeted manipulations

of current network state and the connectivity of focal individu-

als. For example, what management decisions should be taken

to ensure the temporal persistence of multiple prey species for

an endangered predator? Are there mathematically necessary

tradeoffs between the robustness and performance of manage-

ment strategies? Control theory of time-ordered networks is a
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new area of research (Zecevic & Siljak 2010; Abdallah 2011;

Liu, Slotine & Barabasi 2011) that is only beginning to be

applied to biology. Significant progress could be made using

these network approaches for the conservation of diversity and

the preservation of ecosystem functioning (Bascompte & Jord-

ano 2007; Sahasrabudhe & Motter 2011), and for better con-

trolling diseases (Salathé & Jones 2010). Time-ordered

networks can provide a natural framework for tracing changes

in network state and for identifying vertices and temporal pat-

terns that may be relevant for controlling the system.

Lastly, many apparently complex systemsmay be more par-

simoniously described and thus understood using time-ordered

networks. In many networks, flow dynamics and topological

dynamics occur on similar time-scales. In these systems, the

topology of the network influences flow on the network, and

vice-versa, leading to strong couplings between processes and

patterns at different scales. These networks exhibit many inter-

esting properties including phase transitions between states,

symmetry breaking where similar vertices spontaneously

diverge into topologically distinct populations with different

functions and identities, sudden synchronization of behaviour

or topology for multiple vertices, nonlinear shifts in waiting

times and flow processes and strong interactions between sim-

ple local dynamics and global whole-network dynamics (Gross

& Blasius 2008; Funk, Salathe & Jansen 2010). The ubiquity of

these phenomena suggests that many temporally variable sys-

tems could be understood in terms of the couplings between

the topology and flow of their underlying networks. While the

time-ordered network framework does not directly propose

differentmodels that could explain these couplings, it does pro-

vide a natural framework for describing these couplings and

for then comparing the validity of different generative models

(e.g. with stochastic actor-based models that couple processes

of flow and topological dynamics (Snijders, Van de Bunt &

Steglich 2010)). Thus, many biological phenomena – for exam-

ple, multiple stable animal community states, complex patterns

of disease spread or surprising population dynamics of multi-

ple species – may only be understood if we can develop models

that can link local and global-scale network dynamics at a

range of time-scales.

Challenges for the future

Despite the current popularity of network analysis, dynamic

approaches remain rare in ecology and evolutionary biology.

Fortunately, it is now becoming possible for biologists to take

advantage of many recent conceptual and methodological

advances (Table 1). However, several challenges still remain

before dynamic analyses become more accessible. Some rele-

vant questions cannot be addressed with current methods. For

example, the general prediction of future network structure

with or without perturbation is now only possible under the

limiting assumption that the network is in some dynamic

steady state (Snijders, Van de Bunt & Steglich 2010). Many

applied studies of metapopulations or multi-species interac-

tions where perturbations are of interest would be improved

by an advance in this area. Similarly, understanding couplings

between multiple time-scales in a network remains difficult.

For instance, how do rapidly occurring small-scale processes

feed into global-scale processes and patterns, and vice versa?

How do events at one time impact events at a later time? Being

able to scale up limited observations to make inferences about

entire networks over time would be tremendously useful when

data collection is expensive or impractical.

The analysis of network dynamics – time-ordered and other-

wise – still suffers from a limited set of inferential statistical

tools. Although it is clear that accounting for time-ordering

and for temporal dynamics is critical formany issues in ecology

and evolution, only the few methods we have described cur-

rently exist to compare models, carry out hypothesis testing or

detect within- and between-group variation. There is not yet a

general analytical statistical framework for the analysis of

time-ordered networks describing coupled processes. We also

call for the development of even more resources to teach and

implement the methods described. Although several free soft-

ware packages exist (Table 1), there is still a gap between tools

usable by investigators new to network analysis and theoretical

advances made in the field. Fortunately, recent books (Croft,

James & Krause 2008; Newman 2010) and reviews (Gross &

Blasius 2008; Snijders, Van de Bunt & Steglich 2010) are mak-

ing these mathematics more accessible. The interested reader

should also be aware of recent perspectives from the physics

(Holme & Saramäki 2011), computer science (Santoro et al.

2011) and engineering communities (Kuhn&Oshman 2011).

Time-ordered network analysis is only possible when suffi-

cient temporally resolved data are available. Generating

complete and accurate records of interactions at multiple

time points can be very difficult, but should become a prior-

ity. For example, food webs rarely contain more than a few

hundred species, and even more rarely assess their empirical

change over seasons and years (Jarre-Teichmann & Pauly

1993). Community networks involving a much smaller subset

of easily observed species (e.g. plant–pollinator interactions),

however, can include relatively dense data on time-ordered

networks (Bascompte & Jordano 2007). Similarly, good data

are available for animals social networks that are visually

observed semi-continuously (e.g. primates in a research cen-

tre (Flack et al. 2006), ant colonies in the lab (Blonder &

Dornhaus 2011)) or lizards remotely tracked semi-continu-

ously in the field (Godfrey et al. 2012). However, the situa-

tion is more difficult in animal groups analyses where

individuals are rarely observed (e.g., dolphins or meerkats in

the wild (Lusseau et al. 2003; Drewe, Madden & Pearce

2009) or pollinators on plants (Bascompte & Jordano 2007)).

In these cases, network analyses are often based on one or a

few time-aggregated networks. However, time-ordered net-

work analyses could be highly insightful in systems where

data coverage does not yet exist. While methods are avail-

able to correct for sampling and observation issues in time-

aggregated networks (Lusseau, Whitehead & Gero 2008), we

are aware of no tools for time-ordered networks. It is also

unclear how much missing data is acceptable in time-ordered

network analysis. Thus, an open challenge is to develop bet-

ter tools for missing data and also to obtain support for
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long-term and high-coverage studies of the dynamics of a

range of systems. Advances in electronic sensors and video-

tracking may provide a way forward (Cattuto et al. 2010; Pin-

ter-Wollman et al. 2011; Jeanson 2012). Only with such data

will we realize the full potential of network dynamics to answer

a range of fundamental and applied questions. Comparative

studies of networks across time-scales and systems may reveal

general principles in the organization of biological networks

and would permit robust comparisons with theoretically opti-

mal networks and human-engineered networks.

In sum, the broader consideration and application of net-

work dynamics has great potential to push forward our

understanding of biological interactions. Temporal dynamics

are found in all natural systems and underlie many broad

scientific questions. By extending theory and data to account

for temporal dynamics, we can couple a powerful time-

ordered network framework to a much wider range of sys-

tems and questions.
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Glossary

Coupled dynamics: the simultaneous change of a network’s

topology and the flow of resources on it, involving strong

feedbacks between these two processes at the same time-

scale.

Degree: the number of edges for a given vertex, potentially

indicating the importance of a vertex in a network. The fre-

quency distribution of degree can indicate underlying

dynamic processes.

Edge: a link between two vertices in a network, indicating a

persistent interaction, an instantiation of an interaction or a

probability of an interaction. Edges may be weighted to

denote interaction strength.

Flow dynamics: the movement of resources (energy, disease,

information, etc.) on a network over time. Topological

dynamics of the networkmust be slower than flow dynamics.

Time-aggregated network: a network constructed by combin-

ing all interactions observed over some time window. Most

networks are time aggregated.

Time-ordered network: a network that represents exactly all

of the dynamic observations made by an investigator. Time-

ordered networks indicate the multiple time-scales inherent

to a biological system, can be used to study flow dynamics

and can be collapsed to time-aggregated networks to study

topological dynamics.

Topological dynamics: changes in the edges or vertices of a

network over time.

Vertex: an individual object in a network that represents the

biological phenomenon of interest.

Window size:An interval of time over which observed interac-

tions are aggregated into a network. Many descriptive statis-

tics like degree depend strongly onwindow size.
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