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Abstract Social insect colonies (ants, bees, wasps, and termites) show sophis-
ticated collective problem-solving in the face of variable constraints. Individuals
exchange information and materials such as food. The resulting network structure
and dynamics can inform us about the mechanisms by which the insects achieve
particular collective behaviors and these can be transposed to man-made and social
networks. We discuss how network analysis can answer important questions about
social insects, such as how effective task allocation or information flow is realized.
We put forward the idea that network analysis methods are under-utilized in social
insect research, and that they can provide novel ways to view the complexity of
collective behavior, particularly if network dynamics are taken into account. To
illustrate this, we present an example of network tasks performed by ant workers,
linked by instances of workers switching from one task to another. We show how
temporal network analysis can propose and test new hypotheses on mechanisms of
task allocation, and how adding temporal elements to static networks can drastically
change results. We discuss the benefits of using social insects as models for complex
systems in general. There are multiple opportunities emergent technologies and
analysis methods in facilitating research on social insect network. The potential for
interdisciplinary work could significantly advance diverse fields such as behavioral
ecology, computer sciences, and engineering.
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1 Introduction

1.1 Social Insect Biology

There are currently over 1.7 million described species on earth and 1 million of
these are insects. Insects can be found in nearly all habitats and the earliest insects
are thought to have evolved 400 million years ago [39, 96]. Within this exceptional
group there exists an even more exceptional group: the social insects. Though they
only represent 2% of insect species, social insects may constitute up to 80% of
insect biomass and in total outweigh vertebrates by 7 to 1 [41, 89, 104]. They are
known to be one of the most ecologically successful groups in nature, dominating
most terrestrial habitats. Division of labor is often cited as a primary reason for their
ecological success, particularly in ants [42, 72, 90, 103].

Social insects, including particularly termites, ants, bees and wasps, live in family
groups of up to millions of members, called colonies. Colonies contain only one
or few “queens”, who lay eggs and ensure colony reproduction. The rest of the
colony is primarily composed of workers and sometimes males. Workers ensure the
maintenance and growth of the colony. When a colony matures, it produces sexuals,
male drones and female queens, which leave the colony to mate and establish new
colonies.

The reproductive division of labor between queens and workers is an essential
component of eusociality or “true sociality”. Although workers do not reproduce
themselves, they gain indirect fitness through the queen because queens and workers
share a large proportion of their genes. This leads to extreme cooperation between
individuals within a colony and thus group-level optimization of colony features.

1.2 Information Exchange Networks in Social Insects

Social insect societies are complex self-organized systems. They display sophis-
ticated problem-solving that emerges from relatively simple individual behaviors.
For example, ant and bee colonies can select the best among several nest sites
that differ along multiple dimensions by a consensus-decision-making process that
resembles a voting procedure. They also demonstrate division of labor, which
involves individual workers adaptively allocated to different tasks (e.g. caring for
eggs, larvae, and pupae or brood care; building; foraging; defense; etc.), in a way
that is robust to change in demand and to individual failure or even to loss of large
numbers of workers. Many of these processes are regulated by interactions between
the individual agents within the colony. As such the structure and dynamics of the
network of interactions will affect overall colony functioning.

Information-sharing between nestmates is thus necessary for the coordination of
social insect colonies. The most commonly known means of communication among
social insects are pheromone trails. However, social insects use a wide range of types
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of communication including visual, acoustic, tactile, vibration, and chemical cues
other than pheromone trails [37, 42]. Each of these modalities of communication
has properties that could affect information flow in complex ways. For example,
broadcast cues like volatile pheromones will likely have a greater range than an
individual-specific cue like antennation (touching with antennae, which contain
sensory organs). Broadcast cues also travel faster, though less reliably than contact
signals. The type of communication will fundamentally affect network structure, as
it affects how many links a single communication event creates and how connected
the network will be. It also affects network dynamics by changing the speed and
reliability of information flow. As such, we might expect that the structures and
properties of the interaction networks for each of these methods of communication
could be different and optimized for different constraints.

For example, different species of ants are optimized for different environments.
When workers in mass-recruiting ants find a new food source, they lay pheromone
trails on the return trip to the colony. These pheromones serve to both recruit new
workers to exploit the food source as well as guide these foragers to it. Successful
foragers typically add to the pheromone trails on the return trip. This creates a
feedback loop where the better the food source, the more foragers will be recruited to
exploit it, allowing the ants to quickly and efficiently exploit resources. In addition,
this enables ants to find the shortest path to a food source through a self-organized
process [7, 19]. However, studies have shown that, although pheromone laying ant
species are capable of quickly exploiting food sources, they cannot quickly switch
to a new, better food source because they get locked into exploiting the food source
with the existing pheromone trail [8, 19, 54]. There is evidence suggesting that this
phenomenon, linked to symmetry-breaking, could be explained by non-linearity of
individual choice behaviors in response to signal strength [54]. This suggests that
mass-recruiting species are better suited to less variable environments.

Other species have developed different means of recruitment and communication
about food source locations. For example, some species engage in “tandem-
running,” where a worker who finds a food source returns to the colony and recruits
a second individual which then follows the leader back to the site by maintaining
antennal contact. Such recruits, having learned the location of the resource, can then
return and recruit more individuals in turn, thereby creating a feedback loop which
increases the total number of individuals having knowledge of the food site location
and who can contribute to its exploitation. Studies have shown that this means of
recruitment is much better suited to exploiting sporadic and ephemeral food sources
because any time an individual forager returns from a new food source, it is able to
immediately recruit other workers to it [33, 83].

1.3 Why Should We Care About Social Insects?

Social insects must also balance many simultaneous constraints, such as efficient
communication and movement within the colony with nest defense and limited
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disease propagation. This is particularly interesting because man-made networks
are also often faced with multiple constraints and social insects could serve as good
model systems. For example, balancing efficient movement in termite colonies with
limiting disease spread [76, 77] can easily be applied to efficient data transmission
in computer networks while limiting the potential for spreading viruses or other
harmful programs. Furthermore, balancing efficient movement and communication
within the colony with effective nest defense could have military applications.

Colonies are sometimes spatially organized such that workers show fidelity to
certain areas of the nest [44, 92]. There are often relationships between spatial
location of individual workers and their task specialization [82,92], age [91], and/or
body size [44]. Although it is unclear whether spatial location is driving these
relationships, it is clear that the spatial location of interacting workers will change
the structure of interaction networks [10, 80]. The physical nest structure itself can
also affect information flow by constraining interactions, thus limiting global and
enhancing local information flow.

Many biological networks, including social insect networks, are thought to
approximate scale-free networks [3,4,31]. Specifically, the connectivity (or degree)
of biological networks often follows a power law distribution. Scale-free networks
share certain properties that make them particularly interesting to study. They are
typically composed of several hubs, or more central nodes, and a large number of
nodes with few connections. They also belong to a class of networks known as small
world networks, which have the property of rapid communication between nodes
throughout the network. Lastly, scale-free networks are often robust or resilient to
the removal of random nodes.

Although many biological networks have been shown to be scale-free (metabolic
networks, [47]; protein–protein interactions networks, [60]; gene expression net-
works, [70]; gene interactions, [98]), there is still some question as to how prevalent
scale-free networks are in biological systems [52]. In the case of social insect
networks, there is yet to be a clear answer. Because the size of social insect
colonies is often small (naturally limited to no more than a few hundred individuals),
natural scales may emerge in a network and also limit the power of model-selection
approaches to detecting scale-free phenomena.

In Sect. 2, we review the current literature and show that degree distribution in
social insect can depend on colony size. However, when social insect networks are
found to be scale-free, it is possible to transpose methods and results from these to
other scale-free networks, such as computer, social or business networks, and vice
versa [3].

Social insects are particularly interesting to network scientists in all fields
because they are an evolved (and thus optimized) system in which the interacting
parts can be individually tracked and manipulated (Fig. 1). The same cannot be said
for many other model network systems, such as primate social networks [95]. This
is particularly interesting because experiments can be conducted on social insect
networks that might not be possible in networks in other fields. We can map many
of social insect adaptive functions on to functions of interest to humans. That is,
they are a simulacrum of our engineered world.
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Fig. 1 Individually marked
ants of the species
Temnothorax rugatulus.
Photo by Alex Wild

1.4 Role and Types of Networks in Social Insects

Most research to date has focused on interaction networks, i.e. ones where individual
workers are nodes and edges are defined as interaction events between workers.
The relevant interactions used as network edges can be of different types such as
spatial proximity [45, 73], physical contact (usually with antennae, “antennation”)
[10, 67, 80], a food exchange event [15, 68, 69, 93], or specific communication
signals [38, 56]. Such studies may investigate questions relating to the propagation
of disease or information through the colony, and may test specific hypotheses
concerning speed of transmission, whether all individuals are equally likely to be
reached by the disease/information, or whether particular individuals or subgroups
of the network (e.g. foragers or the queen) will transmit information/diseases more
or less quickly than the rest of the colony.

Interaction networks can be directed, i.e. interactions may have a defined
directionality. This can be the case in food flow networks, where one worker gives
food to another worker. Given that only a fraction of the colony is out foraging at
any time, successful foragers need to be able to share food, which they can store
in their crop, with other workers and brood. The process by which this food is
regurgitated and shared is called trophallaxis. Food flow networks are comprised of
individual ants as network nodes and edges as trophallaxis events. The duration of a
trophallaxis event tends to correlate with the amount of food being transferred [21],
and edges may be weighted by duration of this interaction. Food flow networks can
answer questions such as: what is the mean degree of separation between foragers
and nurses (individuals who care for the immature brood)? Is food channeled to
particular individuals preferentially (nurses, queen)? What elements of the network
structure are necessary to achieve these things? Are networks structured to increase
food distribution while simultaneously decreasing disease spread?

Worker–worker contact (interaction) networks can also be used to answer
important questions. However, many key questions can only be answered by looking
beyond networks constructed from mere physical contacts between individuals. In
ecology, plant–pollinator networks (bipartite networks between pollinator commu-
nities and plant communities) have been the focus of much research. Pollinator
communities are often composed primarily of social insects [22]. These types of
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networks can be used to look at the resilience of plant–pollinator communities to
the disappearance of one or many pollinator species [28,29,43,62,94] and temporal
variation in plant–pollinator interactions [1, 5, 78].

Beyond these networks, other extremely interesting possibilities of non-
interaction networks exist. For example, it is possible to create worker–task bipartite
networks where each worker is linked to the set of tasks it performs, and each task
is linked to the set of workers that perform it. Research using worker–task networks
would enable investigation of worker specialization and individual variation of
worker specialization as well as questions of network resilience to worker loss or
failure.

Alternatives to interaction networks include task–task networks, in which inter-
actions are weighted and directed by the number of workers switching from one task
to another [31]; worker–nest area networks, which could help investigate spatial
fidelity within the nest and even nest area–nest area networks which could yield
information about the movement patterns of individuals within colonies.

In this chapter, we make the case that looking beyond the worker–worker
interaction networks is a necessary new direction for social insect network research.
Further developing alternative network types will allow researchers to pose and
answer new kinds of questions, and keep the field dynamic and exciting. Integrating
networks at different organizational levels could be used to developed unified
models [55]. In the following sections we review a selection of worker–worker
interaction networks covering classic questions explored by these types of networks
as well as two alternative networks types that look at the temporal stability of
bipartite plant–pollinator networks and the temporal dynamics of nest construction.
We then present a worked example with original data of a task–task network in an
ant colony to showcase the potential of exploring new types of networks.

2 Network Dynamics Applied to Social Insects

In recent years, networks have become increasingly popular in social insect
research. Here we survey previous network research on topics than include inter-
action network resilience, flow (information, disease, and food), temporal stability
of species interactions (plant–pollinator systems), and temporal dynamics of nest
construction. Recently, researchers have focused on adding temporal elements to
existing models and investigating the properties of network dynamics. Temporal
networks on their own can provide insight into dynamic patterns within social
insect colonies (e.g. network stability), and including a temporal dimension to
static networks can yield surprising results and even invalidate conclusions drawn
from static networks. The topics discussed in the following section (resource flow,
group structure, task allocation, multi-species interactions) are actually dynamic
processes, and as such are ideally suited to be studied from a dynamic perspective.
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Fig. 2 Representation of a
time-ordered network.
Reproduced with permission
from [10]

2.1 Worker–Worker Interaction Networks

2.1.1 Information Flow

Social insect interaction networks have been described in different ways: worker
interaction networks (e.g. [80]), network motifs (e.g. [100]), and temporal dynamic
networks (e.g. [11]). Many complex interaction networks are adapted to inhibit or
promote the transmission of disease, resources, or information between individuals.
However, interactions between individuals occur over time, may be repeated, and are
stochastic. These temporal dynamics are certain to affect network function, and are
not captured by static network analyses. There is currently a trend in the literature to
incorporate temporal dynamics into established static models and to apply methods
that directly take the dynamic nature of interactions into account.

In a recent paper, Blonder and Dornhaus [10] investigated constraints on
information flow in colonies of the ant Temnothorax rugatulus. They employed
a “time-ordered network” (Fig. 2) which directly incorporates the timing of inter-
action events, and thus allows the tracing of possible pathways of information
flow through time. The observed network of ant antennation interactions (physical
touching with antennae) was compared to a diffusion model in which all individuals
interact like kinetic gas particles. They compared the number of individuals reached
by a message propagated from a random individual within a set time interval in
the diffusion model with the observed ant interaction network. This measure can be
thought of as an upper bound to information flow, as it was not determined whether
each interaction actually involved transmission of information.

They found that, at large time-scales, information flow was significantly slower
in ant networks than that predicted by the diffusion model, but that at small time-
scales information flow was faster than predicted. This suggests that the structure of
the ant network is optimized to facilitate local information flow, but also underlines
the importance of using an appropriate time-scale as results may vary.

The absence of a relationship between the number of individuals a focal ant
touches (out-degree) in one bout of filming compared to the next (Fig. 3) suggests
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Fig. 3 Individual out-degree
between the first and second
observation of all colonies.
Reproduced with permission
from [10]

that individual ants did not consistently hold central roles within the network. This
is especially interesting as many scale-free networks show consistent individual
specialization.

Since this lack of individual consistency in interaction pattern was not found
in other studies [45, 80], it is likely that these network properties differ between
different ant species with different ecology and life history (colony size, nest types,
etc.), whose individual and collective behavior is optimized for different conditions
and constraints.

2.1.2 Resilience of Colony Function to Perturbation

Network resilience can be broadly defined as the ability of a network to retain
or restore its function after perturbation [35, 65, 106]. In the case of a computer
network, this means being able to provide and maintain an acceptable level of
service in the face of faults. For ecological networks such as between plants and
their pollinators, this may mean having a limited extinction of plant species should
several species of pollinators disappear. For social insect interaction networks, this
may mean maintaining an acceptable level of function when individuals fail, either
by making errors or by disappearing.

In a study looking at the resilience of a colony to the death of workers, Naug [67]
assembled undirected worker–worker contact networks weighted by the frequency
of interactions before and after removal of random workers from colonies of the
social wasp Ropalidia marginata (Fig. 4). By comparing the intact and reduced
networks, he showed that path lengths were maintained, thus preserving information
flow throughout the colony (Fig. 5a). The wasps achieved this by an increase in
connectivity amongst remaining individuals attained through an increase in the rate
of interactions. As such, his results showed that interaction networks within this
wasp species were resilient to the removal of random workers.
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Fig. 4 The social wasp
Ropalidia marginata (top)
and its nest (bottom). Top: by
School of Ecology and
Conservation/CC-BY-2.5.
Bottom: by
Abhadra/CC-BY-2.5

Fig. 5 (a) Path length before
(white) and after (black)
removal of random workers.
(b) Clustering coefficient
decreases as colony size
increases. Reproduced with
permission from [67]

Naug [67] also looked at the effect of colony size, i.e. the number of individuals
in the group, on network structure and properties. His results showed that smaller
colonies tended to have more homogeneously connected individuals while larger
colonies tended to have more heterogeneously connected individuals (Fig. 5b).
Uniform connectivity in small colonies may allow all workers to have access to
information about what work needs to be done. This might lead to more generalist
workers in smaller colonies (if workers frequently switch tasks). On the other
hand, workers in larger colonies only have access to partial information, potentially
leading to behavioral specialization. This is in accord with the prevailing view in the
literature that group size often correlates with task specialization ([34, 46, 50, 97],
although see [26]).

However, colony sizes in this study ranged from 8 to 40 individuals which form
relatively small interaction networks. Samples across more orders of magnitude
would provide greater insight into the effects of colony size on network properties,
but there are often natural and practical limitations to these studies. For example,



226 D. Charbonneau et al.

Fig. 6 (a) Ants of the genus Odontomachus with mandibles open at 180ı and resting in closed
position. These ants hold the record for fastest moving predatory appendages within the animal
kingdom [75]. Photos by Alex Wild. (b) Strength of associations between workers at different
times. Reproduced with permission from [45]

colonies of Ropalidia marginata (the wasp species used in the Naug study) typically
hold no more than 200 workers and the amount of work required to collect these data
increases exponentially with colony size. Thus the application of scale-free network
concepts may be less relevant in these naturally small systems.

A related study looked at the stability of interaction networks and their resilience
to queen removal in ants of the genus Odontomachus, often called “trap-jaw ants”
because of their unusual mandibles (Fig. 6a). In this study, Jeanson [45] used
passive microtransponders superglued to the ants to track their spatial position
over a 3 week period. By assuming that ants who came in close proximity were
interacting, the author created a dynamic worker–worker interaction network. His
results showed that the interaction networks were stable over time and resilient to
the removal of the queen, but that inter-individual differences were important in
connectivity patterns (Fig. 6b). Specifically, some workers formed stronger long-
lasting interactions with a smaller group of nestmates while other workers did not
have privileged relationships and interacted uniformly with their nestmates.

2.1.3 Disease Transmission

Social insects, like humans, are particularly susceptible to disease because of high
population density, genetic homogeneity within colonies, and high interaction rates
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[105]. As such, social insects may have evolved strategies which mitigate the effects
or limit the transmission of diseases.

If interaction networks are scale-free, interactions should not be uniformly
distributed amongst individuals. A small number of workers should be more central
and most workers should be directly connected only to a subset of the colony. One
effect of this organization is that networks are particularly resilient to the random
loss of some individuals [67]. It has also been shown that that highly clustered
subgroups and short average path lengths, which are characteristics of scale-
free networks and incidentally small world networks, should maximize efficient
communication [101]. As such, we might expect that disease transmission would
equally be maximized.

However, there could also be some evolutionary pressure to limit the spread of
disease within social insect colonies. Certain features of colony organization help
limit the spread of disease [67] and infection period plays an important role in the
spread of disease in social insect colonies [69], as it does in human societies [51].
Indeed, one effect of clustered subgroups is that the network is partitioned which,
combined with short infection periods, can result in a limited spread of disease
throughout the colony because portions of the colony will die out before the disease
can spread to the majority of the colony. Indeed, in an agent-based modeling study,
Pie et al. [79] show that even minimal spatial segregation tends to slow the spread of
disease. On the other hand, if the infection period is long, then the highly efficient
communication of the network will ensure that most if not all of the colony will be
infected.

A study investigating colony properties and their effects on the transmission of a
contagious pathogen (Crithidia bombi) in bumblebee colonies (Bombus impatiens)
used automated video tracking of uniquely identified bees to measure worker–
worker contact (spatial proximity) networks within the colony and quantified the
actual spread of the pathogen [73]. They showed that across colonies, rates of
infection were mostly dependent on network density (average contacts per minute)
where higher densities lead to higher rates of infection (Fig. 7). Furthermore, the rate
of contact for individuals predicted the likelihood of infection for that individual.

Similarly, using weighted trophallaxis networks (undirected food sharing net-
works weighted by transfer duration) to emulate the transmission of orally trans-
mitted pathogens rather than those transmitted simply by contact, Naug [68] shows
that disease transmission in honeybee colonies is more widespread when colony
interaction networks have lower clustering coefficients (degree to which nodes in
a graph are clustered together). Interestingly, lower clustering coefficients and high
network densities are typically associated with network resilience, which suggests
a tradeoff in clustering between colony resilience to losing workers and limiting
disease transmission. Both of these empirical results are supported by Pie et al.
[79] who use agent-based modeling to show a nonlinear interaction between worker
density and the probability of disease transmission.

A surprising fact about social insects is that a significant proportion (as much as
60 %) of colony workers is inactive at any time [27, 85]. One reason for this may
be that reduced activity slows disease transmission, presumably because interaction
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Fig. 7 The average time of
infection from Crithidia
bombi decreases with
increasing network density
(average contacts per minute)
in colonies of Bombus
impatiens. Reproduced with
permission from [73]

rates in less active colonies would be lower ([79], Fig. 8). Interestingly, an empirical
study found no effect of individual activity on the risk of infection [73]. Naug [68]
also suggests that the location of younger individuals both within the colony and the
network could have the effect of limiting their exposure to diseases.

2.1.4 Food Flow

Sendova-Franks et al. [93] looked at the network structure of trophallaxis interac-
tions and its progression in time in the ant Temnothorax albipennis (Fig. 9). They
also compared colonies in normal feeding situations with colonies that had been
starved for 48 h. Note that this ant genus is highly starvation resistant: colonies have
been shown to survive up to eight months of complete starvation [88]. Within the
first 30 min, as much as 95 % of ants from starved colonies (Fig. 10, full circles) were
fed, versus less than 50 % of ants in fed colonies (Fig. 10, empty circles). Increased
efficiency in food distribution resulted from increased movement of internal workers
away from the brood piles (eggs larvae, and pupae which are typically at the
colony center) and movement of foragers carrying food further into the nest. Indeed,
both the number of recipients per donor and the number of ants participating in
trophallaxis increased in starved colonies. Furthermore, the distance of a vector from
the centroid of internal workers to the centroid of external workers (or foragers)
was shorter after starvation than in the control and the direction of this vector
was parallel to that of a line going between the nest entrance and the center of
the brood pile. This is particularly interesting because workers have shown spatial
fidelity according to their tasks where internal workers are essentially segregated
from external workers, a phenomenon which was observed in the fed colonies, but
not in the starved colonies. After starved colonies had been sated, spatial segregation
resumed.
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Fig. 8 Relationships between worker density, probability of transmission and colony activity
obtained from an agent-based model. Reproduced with permission from [79]

Fig. 9 Nest of Temnothorax albipennis ants surrounded a wall of colored sand grains built by
the ants. Photo by Anna Dornhaus
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Fig. 10 The cumulative proportion of the colony fed for colonies A (a), B (b), C (c) and D (d)
when that were starved for 48 h before feeding (full circles) and during regular feeding. Reproduced
with permission from [93]

After starvation, some workers stored food rather than pass it on to other ants.
They suggested that these ants are living “silos” and they may also act as food
testers for the rest of the colony. Essentially, by storing large amounts of newly
acquired food in these individuals the colony can test whether the food contains any
toxins. If there were, only the “silo” worker would die, thus saving the rest of the
colony. Otherwise, if the “silo” ant seems healthy, then the food would likely be
safe. However the long-term network dynamics of food and disease flow were not
directly investigated in this study.

2.2 Beyond Worker–Worker Interaction Networks

2.2.1 Temporal Stability of Species Interaction Networks

Different types of animals and plants often interact with each other in beneficial
or harmful ways. For example, there is a long history of studying plant–pollinator
systems, in which different species of plants are pollinated by different species of
animals, usually insects [58, 86]. These interactions among different species can
be thought of as plant–pollinator networks. Studies on such networks make use
of theory developed in food web networks [28, 29, 43, 94]. These have allowed
researchers to address questions relating to the resilience of such species networks
to changes in biological community composition [62], the effects of invasive plants
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on plant–pollinator networks [57], and the disruption of pollination networks due to
global warming [61].

Resilience is tested by simulating a perturbation, typically by removing network
nodes, and examining its effects on network topology and function. Plant–pollinator
networks have been shown to be fairly resilient to removals [28, 29, 43, 94]. It is
thought that resilience in pollination networks might stem from a redundancy in
pollinators per plant as well as from the nested topology of the networks [62].

In the last 20 years, the question of specialists vs. generalists in plant–pollinator
systems has been the subject of active debate. The idea that interactions between
plants and pollinators tend toward specialization, or that plants and pollinators
will coevolve towards increased fidelity, has long been widely accepted [2, 40].
However, in an extensive review, Waser et al. [99] showed evidence that perhaps
generalists might be equally important and prevalent. Within the last decade, due to
advances in network theory and an increasing awareness of networks, researchers
have been using network approaches to address this question. Some work focused
on characterizing the network properties of plant–pollinator systems such as the
distribution of specialists to generalists [6, 103]. Although this work is important in
understanding plant–pollinator network structure, it does leave the question of how
these networks might vary in time. Indeed, research has shown that relationships
between specialists and generalists are complex and that plant–pollinator networks
are both asymmetric (interaction rates are not equal in each direction) and nested
(species with few links have a sub-set of the links of other species), but until recently
we did not know how stable these interactions were over time. A few recent studies
explicitly address this issue [1, 30, 71, 78].

These studies showed that pollination network topology varied through time.
Indeed, both the number and identity of interaction partners varied in time. This
suggests that the relationships between plants and their pollinators may not be as
strong or exclusive as expected. Indeed, within a single year of plant–pollinator
interactions, a large portion of plants and pollinators seem to be specialists, but over
a longer timescale interactions that were strong one year are not necessarily strong
the next year (Fig. 11).

While the precise network topology of pollination networks varied through time,
overall structural parameters of the network (e.g. degree centralization, connectance,
nestedness, average distance, and network diameter) remained fairly constant.
A large scale study spanning a wide range of latitudinal gradients shows similar
results [30]. These studies are particularly interesting because they show how
different patterns can appear at different timescales.

2.2.2 Temporal Dynamics of Nest Construction

Many social insects build complex nests which both constrain and facilitate col-
lective organization. Nest often consist of multiple chambers connected by tunnels,
and these have garnered much attention from researchers interested in networks.
The networks created by social insect nest architecture are particularly interesting
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Fig. 11 Time dependence of “apparent specialization” of (a) pollinators and (b) plants. Repro-
duced with permission from [78]

because they show how self-organized networks can solve problems with multiple
complex constraints, such as the need for efficient movement within the colony
while making the nest defensible to attacks.

Over the last decade, with increasing accessibility to sophisticated computer
and imaging tools and the interest in applying network approaches to biological
systems, we have seen a progression of increasing complexity and detail in the
studies investigating the network structure of nest architecture. Early studies focused
on two-dimensional nest architecture and looked at the network properties of nest
architecture such as the effects of group size on nest architecture [16], the efficiency
and robustness of nest networks [18], and the relationship between topology and
structural properties of nest networks [17].

More recently, researchers looked at nest networks in three-dimensional space,
which better represents nest architectures of many species. Using computer tomog-
raphy (CT) scanning to build three-dimensional models (Fig. 12) of nest architec-
ture, Perna et al. [76, 77] looked at the transportation efficiency in termite nests and
found that it is significantly higher than random, but below optimal transportation
efficiency (Fig. 13). They proposed that this was a compromise between multiple
constraints, such as efficient connectivity inside the nest, defense and resilience to
attacking predators, and spatial constraints.

Recently, Minter et al. [63] investigated the temporal dynamics of nest building.
Using microcomputer tomography at multiple time points over a 24 h period, they
were able to track tunnel and chamber construction in time (Fig. 14).

In this study, they showed how features of the environment, specifically the
presence of planes between sediment layers, would influence nest construction.
When ants met with a new sediment layer, they tended to excavate more horizontally
along the planes and over longer periods before continuing to tunnel downwards.
They suggested that it is in fact not the planes they are responding to, but rather
local heterogeneities in sediment compaction. This suggests that the importance of
local information outweighs that of global information in determining individual
nest construction behavior which in turn leads to the emergent phenomenon of nest
structure.
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Fig. 12 (a) Above ground mushroom shaped termite nest. (b) tomographical cut of the same nest
(the arrows indicate two of the corridors between chambers). (c) representation of chambers and
galleries as a network. Nodes are chambers in the nest and edges are corridors. Reproduced with
permission from [77]

Fig. 13 Average topological path length for random spanning subgraphs (black), optimized
spanning subgraphs (horizontal lines), and real gallery networks (red circles). Reproduced with
permission from [77]

Fig. 14 Example of the progression of three-dimensional nest structure through time. Reproduced
with permission from [63]
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3 Even Further Beyond Worker–Worker Networks:
A Task–Task Network

Networks play a role in several aspects of collective behavior in social insects. In
Sect. 2 we presented a selection of the network types that have been most studied
so far, including worker–worker interaction networks as well as other network types
(bipartite plant–pollinator networks and nest architecture networks). We made the
case for looking beyond networks of individual interactions, and employing network
theory more broadly to other types of complex interacting processes. In support of
this idea, we present original data worked into an example of a task–task network,
i.e. defining the different tasks performed by workers in an insect colony as nodes,
and each case of a worker switching between tasks as linking these nodes.

The process of allocating workers to the different jobs (“tasks”, such as foraging
or nest-building) in a colony is both difficult and important to colony performance
[9,13,36]. There is no consensus in the literature on how this is achieved in the face
of changing demand for tasks and possible worker failure. To investigate this issue,
we performed a temporal network analysis of the dynamics of task switching, asking
if certain switching patterns were particularly common and whether the patterns of
switching were stable over time. We hypothesized that workers would often rotate
through certain “hub” tasks before switching to other tasks, and that flow through
other tasks would be consistently low.

We collected a colony of Temnothorax rugatulus ants consisted of 41 workers
and 2 queens in the Santa Catalina Mountains, outside of Tucson, Arizona USA in
a pine forest at an altitude of approximately 8,000 ft. The collected ants were kept
in the lab in artificial nests made of a piece of cardboard sandwiched between two
glass slides ([27], see Fig. 15a). In the field, these ants typically nest in small rock
crevices and artificial nests emulate these [32].

The ants were then painted with unique combinations of four paint spots, one
on the head, one on the thorax and two on the abdomen so that they could be
individually identified and tracked (Fig. 15b). Videos (5 min long) of normal colony
activity were taken at four time points throughout the day: 8 am, 4 pm, 8 pm and
4 am (Fig. 15c). For each ant, the task it performed was recorded every second by
an observer (see Table 1 for task list).

We first constructed a time-ordered network for each 5-min interval, creating a
node for each task and an edge for each instance of a worker switching between
tasks. Time-ordered networks are structures that provide a complete record of the
timing of all observed interactions [11]. Here an example is shown for the first
5-min interval, qualitatively demonstrating extensive switching involving the tasks
“wandering inside” (wi), “self-grooming” (sg), and “brood care” (bc), and some
involving rotating through inactivity (i) (Fig. 16).

We used established techniques [11] to transform these time-ordered networks
to a series of time-aggregated networks, with the aim of applying network methods
in a temporal context. We chose a window size of 60 s but in this case results are
robust to the choice of window size. Time aggregated networks constructed from
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Fig. 15 Artificial
Temnothorax rugatulus nest
composed of a piece of
cardboard sandwiched
between two glass slides (a).
Individually marked ants. The
larger ant is a queen (b).
Video recording setup of HD
cameras equipped with servos
filming an ant colony (c).
Photos by Daniel
Charbonneau

Table 1 List of possible
tasks observed during video
analysis and their associated
codes

Code Task

b Nest building
f Foraging
wo Wandering outside nest
bc Brood care
sg Self-Grooming
go Grooming other (giver)
og Grooming other (receiver)
t Trophallaxis
fd Eating
wi Wandering inside nest
i Inactive

the first 5-min interval are shown below. These networks qualitatively demonstrate
consistent patterns of flow between tasks (Fig. 17).

To quantitatively test whether workers return to a “hub” task before switching
to new tasks, we measured betweenness for each task for every time-aggregated
network during every interval (Fig. 18). The “wandering inside” (wi) task has
the highest betweenness over nearly every time interval, demonstrating that it is
a hub task. Most other tasks had consistently low betweenness. We then tested
for temporal stability in the task flow by assessing trends in the betweenness of
“wandering inside” (wi) over time. Within each interval, we found no significant
increase or decrease (ANOVA; all p > 0:12). However across all intervals, there
was a significant increase and then decrease in betweenness (ANOVA with linear
and quadratic terms; both p < 0:02).
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Fig. 16 Example of a time-ordered network for the first 5-min interval. Explanations of task
abbreviations can be found in Table 1

Fig. 17 Example time aggregated networks for the first 5-min interval. The numbers in the center
of each network indicates the time interval in seconds. Explanations of task abbreviations can be
found in Table 1

This temporal network analysis therefore indicates that there is minute-scale
stability in task flow but hour-scale variation, and that most variation in task
assignment is mediated through temporary assignment of workers to “wandering
inside” (wi) tasks.

To interpret these results, we must first discuss the observed tasks. These fall
into three separate categories. The first category, which includes all tasks with
the exceptions of “wandering inside” and “inactive”, represents observable tasks
that are thought to contribute to colony fitness (e.g. brood care or foraging). The
second category (inactivity) is a conservative estimate of the time at which and
duration during which individuals are inactive. The last category (anytime workers
are wandering inside the nest but without performing an identifiable task) is less
interpretable. We do not know whether they are simply being inactive, whether
they are in fact performing some other yet to be identified task, whether they are
simply between tasks, or whether they are looking for work to do. Some evidence in
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Fig. 18 Betweenness for each task for every time-aggregated network during each 60 s interval
for all time points. Explanations of task abbreviations can be found in Table 1

Fig. 19 Mean proportion of time spent in each task

honeybees indicates that they may be “patrolling”, i.e. collecting information about
demand for work in different tasks [49].

The fact that the “wandering inside” (wi) task is a hub task (highest betweenness
over nearly every time interval) suggests that the latter two possibilities are likely.
Indeed, it seems as though “wandering inside” (wi) is an intermediate state between
being engage in a task. We’ve shown that there is extensive switching between the
tasks “wandering inside” (wi), “self-grooming” (sg), and “brood care” (bc), and
some involving rotating through inactivity (i). This is likely because these are by far
the tasks which workers spend most of their time doing (Fig. 19).

The temporal network approach lets us test new types of hypotheses and has
identified a key behavior that deserves future study as it plays a key role in mediating
between other tasks. Our task–task network quantifies the role of wandering in
worker task switching in a new way as compared to other studies [48, 49]. It seems
that ants must wander throughout the nest between tasks rather than awake from
inactivity or directly switch from one active task to another.
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Fig. 20 (a) Examples of the
ant tracking tools being
developed in Dr. Shin’s
laboratory and (b) by
Quitmeyer and Balch.
(c) Temnothorax albipennis
ants with RFID tags

4 Future Challenges and Opportunities

Many complex systems (e.g. social groups, neural networks, macro/micro-
economics, etc.) can be studied with a network perspective, but these are often
limited by constraints such as difficulty in acquiring high quantities of data or lack
of an ethical or cost-effective way to do experiments. Social insects do not have
these issues and thus provide a good model for other systems.

Because social insects are thought to employ relatively simple algorithms to
achieve sophisticated group-level behaviors [19], they have been used as inspiration
for the design of many artificial systems [12, 66]. Insect-inspired solutions have
already been derived from foraging behavior [25], spatial sorting [59], or task alloca-
tion [13], and are used in job-shop scheduling [23], “traveling salesman” problems
[24], software “agents” [74, 102], optimization of communication networks [20],
and collective robotics (e.g. for planetary exploration: [14, 53]. Given the existence
of a variety of methods for experimentation on social insects and that the research
can be transposed to so many other fields, we expect this list to keep growing.

Although social insect colonies are tractable to observation and manipulation and
offer a means of gathering real data relatively quickly, the many steps and processes
required for acquiring data are still fairly time- and work-intensive. In many
cases, social insect networks are created from spatial information and advances
in tracking software have helped reduce the workload of acquiring this type of
data. For example, Dr. Shin’s lab at the University of North Carolina Charlotte has
developed a tracking tool (Fig. 20a) that can highly reliably track individual ants
(96 % C accurate) [81], but there are other tracking tools being developed as well
(e.g. [84], Fig. 20b). The miniaturization of electronics has made it possible to use
of radio-frequency identification (RFID) chips to both uniquely identify individuals
and track individual movement ([64, 87], see Fig. 20c). Lastly, rapidly emerging
analytical methods are being developed by social insect scientists (e.g. the R
package “timeordered” that was used in the worked example. See [11] for a review).

Applying network approaches to social insect research is an emerging area and
many studies are only just getting off the ground. Initial datasets were so hard to
obtain that authors are reluctant to publish them completely. However, with new
methods of obtaining data (e.g. video tracking) and new traditions in science (it is
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becoming more common and often required by journals and NSF to publish full
datasets) this is likely to change. Furthermore, there is a strong interest from social
insect scientists to collaborate and share their data with network researchers and
theoreticians. Indeed, social insect researchers often have the data and the biological
questions which could be answered by network analyses, but lack the know-how to
answer them appropriately.

The development of new network analysis tools can advance our understanding
of social insect networks, but also of general organizational principles. We can
transpose many social insect adaptive functions on to functions of interest to humans
such as organizational structures, social and computer networks as well as physics
and engineering. Social insect networks have been optimized by evolution to deal
with multiple simultaneous constraints and principles derived from social insect
systems can be used to find optimal network structures for multiple functions or
under specific constraints.

Nonetheless, there are future challenges that need to be addressed in order for
the use of the network framework to move forward. More and more the importance
of including a temporal element to static networks is becoming evident. These can
have drastic effects on results and even yield completely inverse results as in the
case of specialist vs. generalist pollinators in pollination networks (See Sect. 2.2.1).

Furthermore, simply including a temporal element is insufficient. Finding and
using an appropriate timescale is equally essential in drawing out accurate con-
clusions. In ant interaction networks, Blonder and Dornhaus [10] show that at
small timescales, degree distribution is heterogeneous and some individuals are
more central than others, but that at larger timescales degree distribution flattens
out and becomes more uniform (See Sect. 2.1.4). If we only looked at the smaller
timescale, we would conclude that some individuals are more central and perhaps
act as communication hubs.

In this chapter, we have made the case for moving beyond worker–worker net-
works. This is an exciting avenue of network research that will open the possibility
of answer novel questions. The framework surrounding bipartite networks will be
especially important in advancing this burgeoning area of research.

Emerging technologies are facilitating the way social insect researchers gather
and analyze data, but their development is also fostering a desire for interdisci-
plinary collaboration. Indeed, the need to develop time-saving technologies as well
as the possibility of transposing research between fields is bringing together biolo-
gists, computer scientist, engineers, physicists, mathematicians, to name a few, and
creating a synergism in research that we feel will be very exciting in years to come.
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