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abstract: Hypervolumes are used widely to conceptualize niches
and trait distributions for both species and communities. Some
hypervolumes are expected to be convex, with boundaries defined by
only upper and lower limits (e.g., fundamental niches), while others
are expected to be maximal, with boundaries defined by the limits of
available space (e.g., potential niches). However, observed hypervol-
umes (e.g., realized niches) could also have holes, defined as unoccu-
pied hyperspace representing deviations from these expectations that
may indicate unconsidered ecological or evolutionary processes. De-
tecting holes in more than two dimensions has to date not been possi-
ble. I develop a mathematical approach, implemented in the hyper-
volume R package, to infer holes in large and high-dimensional data
sets. As a demonstration analysis, I assess evidence for vacant niches
in a Galapagos finch community on Isabela Island. These mathematical
concepts and software tools for detecting holes provide approaches for
addressing contemporary research questions across ecology and evolu-
tionary biology.

Keywords: niche, hypervolume, hole, geometry, Hutchinson, vacant
niche, invasion.

Introduction

Hutchinson (1957) defined the niche as an n-dimensional
hypervolume describing the set of environments that per-
mit a species to exist. He noted that when the environmen-
tal axes “are independent in their action on the species we
may regard this area as the rectangle . . . but failing such in-
dependence the area will exist whatever the shape of its
sides” (p. 416). Many complex hypervolume shapes be-
yond rectangles are possible, especially in higher dimen-
sions, where intuition fails. However, patterns of variation
in hypervolume geometry remain understudied despite wide
interest in the hypervolume concept (Leibold 1995; Colwell
and Rangel 2009; Holt 2009). One key aspect of this geometry
is the presence or absence of empty features within hyper-
volumes. Here I argue that such features (holes) may be able
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to provide insights into a range of contemporary research
topics. I then present a mathematical approach for detect-
ing holes and demonstrate it using both simulated and em-
pirical data.
Concepts and Terms

Hypervolumes can represent a range of ecological con-
cepts depending on their operational definition. They can
be defined for different scales (species, communities) and
for different axes (climate variables, functional traits). For
example, a species-scale hypervolumewith climate axes could
represent a Grinnellian niche (Grinnell 1924), a species-scale
hypervolume with resource axes could represent an Eltonian
niche (Elton 1958), and a community-scale hypervolume
with trait axes could represent a set of ecological strategies vi-
able in a particular location (McGill et al. 2006). Because the
mathematical concepts I will present here are shared between
these definitions, I distinguish between hypervolume types
only when exploring the biological interpretation of different
geometries.
Geometrical Features: Holes and Expectations

An observed hypervolume may have an arbitrarily complex
geometry (Laughlin et al. 2015), for example, as often de-
picted for realized Grinnellian niches (Colwell and Futuyma
1971; Austin 1999). This geometry can be decomposed as an
expectation minus a set of holes (fig. 1). Holes directly indi-
cate deviations from expectations and so may reflect addi-
tional ecological or evolutionary processes beyond those struc-
turing the expectation. The detection of holes provides an
approach for generating hypotheses relevant to such pro-
cesses and allows progress beyond the relatively simple base-
line geometries that have commonly been used to character-
ize hypervolumes.
Two baseline expectations (convexity and maximality)

provide useful starting points for assessing holes. One good
baseline expectation is convexity. If a hypervolume is con-
vex, then for any two points that are part of the hyper-
2.107.140 on February 16, 2016 02:11:01 AM
s and Conditions (http://www.journals.uchicago.edu/t-and-c).



E000 The American Naturalist
volume, all points lying on a line segment between these
points are also part of the hypervolume. An equivalent
way to define a convex hypervolume is by the intersection
of multiple linear inequality constraints, each defining a
separating hyperplane and thus a face of the resulting con-
vex hull (e.g., multiple upper/lower bounds). For example,
an organism that can tolerate any temperature of more
than 107C (first inequality constraint) and less than 207C
(second inequality constraint) has a convex hypervolume.
Rectangles, ellipses, and their multidimensional analogs
(e.g., multivariate uniform and normal distributions) are
examples of convex hypervolume geometries. Fundamental
niches are often thought to be convex (Hutchinson 1957;
Maguire 1973; Austin 1992; Soberón and Nakamura 2009)
because physiological tolerances to different variables are of-
ten thought to be independent and limited only by extreme
values. Species’ physiological limitations (and thus environ-
mental filters) are also widely thought to be convex (Violle
et al. 2012; Lamanna et al. 2014).
This content downloaded from 176.01
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A second baseline expectation is maximality. If a hy-
pervolume is maximal, then its geometry is equivalent to
that of the available n-dimensional space. An axis defining
the hypervolume may have finite bounds or support only
certain sets of values, limiting the shapes of observed hyper-
volumes (Jackson and Overpeck 2000). In practice, this
means that a hypervolume with complex geometry may
purely be the outcome of a shape reaching the “edges” of
the available n-dimensional space. The available climate
space can also be thought of as maximal (Soberón and Nak-
amura 2009). Morphological and trait spaces can also be
thought of as maximal when they encompass all potential
points that are not mathematically or biophysically impos-
sible.
Holes are robust geometric features. They are invariant

to affine transformations—for example, translation, scal-
ing, rotation, or shearing of axes—and therefore should be
detectable across a wide range of hypervolume definitions
and axis specifications.
A B C

D E

Observed Convex expectation Maximal expectation (one of many)

Non−convex holes Non−maximal holes

Figure 1: Typology of hypervolume geometry. A, An observed hypervolume (red) may have an arbitrarily complex shape. B, The convex
expectation (orange) for this hypervolume is described by multiple linear inequality constraints. If any two points are in the convex
hypervolume, then all points along the line segment connecting them are also in the convex hypervolume. C, A maximal expectation (blue)
can have any shape, with boundaries indicating the limits of the available space. D, Holes (gray) can represent deviations from the convex
expectation. E, Holes (gray) can also represent deviations from a maximal expectation.
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Ideas for Applications of Holes

Thinking about hypervolumes in terms of holes provides a
complementary perspective to existing metrics. Functional
richness indices such as convex hull volume (Cornwell et al.
2006) or Bayesian ellipses (Jackson et al. 2011) inherently
do not consider holes. Metrics of dispersion, functional di-
vergence, or evenness (e.g., minimum spanning trees or
nearest-neighbor distances; Weiher and Keddy 1995; Vil-
léger et al. 2008) can provide only summary statistics for
the overall clustering of points within a hypervolume. Met-
rics of distributional moments (e.g., skewness and kur-
tosis; Enquist et al. 2015) are applicable only to single-
dimensional analyses and have the same summary statistic
limitation. And covariance matrices used to describe geno-
types and phenotypes (G and P matrices) describe multi-
variate ellipses that inherently have no holes (Lynch and
Walsh 1998). In contrast, hole detection directly delineates
the empty portions of an n-dimensional space.

The detection of a hole is a necessary but not sufficient con-
dition for inference of processes structuring an observed hy-
pervolume. However, determining the location and shape
of holes can be a useful starting point for generating and test-
ing specific mechanisms or hypotheses, assuming that poten-
tial issues of incomplete or biased sampling can be ruled out.
Broadly, thinking about hypervolumes in terms of holes can
provide new approaches to addressing several contemporary
research questions.
Does Invasion or Succession Preferentially Occur in Holes?

Successful colonists can coexist through increased niche dif-
ferences, decreased fitness differences (Chesson 2000; Adler
et al. 2013), or mass effects (Leibold et al. 2004). There is ev-
idence that in some cases niche and trait differences predict
invasiveness (Van Kleunen et al. 2010) but also that low fit-
ness differences allow invasive species to share niche and
trait values with resident species (Lai et al. 2015). These
analyses have been conducted only in single dimensions.
A key hypothesis is that invasive species preferentially oc-
cupy multidimensional holes in a community’s trait space
or realized niche space.
Do Geographic Range Shifts of Species Reflect
Similar Niche Space Dynamics?

Patterns of geographic range dynamics can reflect multiple
processes (Channell and Lomolino 2000), which could po-
tentially lead to parallel gain/loss of niche space. For ex-
ample, the mechanisms driving the Late Pleistocene ex-
tinction of many megafaunal species (Lorenzen et al. 2011)
have not been assessed in terms of niche geometry. One hy-
pothesis is that species interactions or loss of appropriate
This content downloaded from 176.01
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climate conditions could lead to the formation of holes in
trait space or realized niche space.
Will Contemporary Global Change Lead to No-Analog
Climates beyond Species’ Potential Niches?

Climate change may lead to no-analog climate spaces (Wil-
liams and Jackson 2007) that have not been experienced in
recent history and include holes. A key hypothesis is that
species with potential climate niches falling completely
within a hole might not be able to migrate to nearby regions
with more favorable climate and so become locally extinct
(Burrows et al. 2014).
Do Species’ Niches Evolve Holes?

Niche evolution is traditionally explored in terms of
means or extremes. However, niche evolution does not al-
ways proceed through simple shifts (Pearman et al. 2008).
One hypothesis is that genetic constraints, developmental
constraints, or natural selection prevent the existence of
certain phenotypes (Arnold 1992), leading to the existence
of holes in trait or potential niche space that persist within
or across lineages over time.
Are Fitness Landscapes Holey?

Advances in high-dimensional neutral networks show that
adaptive landscapes are not peaked but instead have fitness
contours that fold over large regions of phenotype space.
Such landscapes have been inferred on the basis of the pres-
ence of a small number of intermediate genotypes connect-
ing populations with very different phenotypes (e.g., in Dro-
sophila; Weber 1996). Thus, one hypothesis is that contours
of high-dimensional fitness landscapes should enclose holes
corresponding to large regions of lower fitness.
Holes Are Difficult to Detect

The shape of a hypervolume is almost always inferred on
the basis of a set of observations. In this context, holes re-
sist detection in more than two dimensions. In two di-
mensions, when raw data are plotted, a hole appears as
a low-density or vacant region that is easily detected by
an investigator. This approach is viable when visualizing
simple data—for example, precipitation-temperature niches
of Eucalyptus species (Austin et al. 1990)—but fails for
n � 3. In higher dimensions, data visualized with multiple
bivariate projections do not indicate holes because addi-
tional data points will almost certainly lie above or below
the vacant region of interest (fig. 2). “Slicing” through data
could alternatively reveal holes, but it is very inefficient in
high dimensions. This approach requires choosing a partic-
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ular two-dimensional projection, then specifying constant
(or near-constant) values for all combinations of n 2 2
other axes. This approach therefore has a geometrically large
parameter space and is not an effective way to detect holes.
Thus, holes may exist in many sets of observations but have
not been found for lack of appropriate tools.
A Probabilistic Approach to Inferring Holes

I present an approach to determine, for a given observa-
tional data set, the subregions that are empty relative to
a given expectation. Briefly, the algorithm assumes that
the data points are sampled from a probability density func-
tion with a certain shape H. The shape of H is inferred on
the basis of padding each observation by a certain amount
characterized by a kernel bandwidth vector b. The shape of
H is then compared to the shape of a baseline expectationB,
and the low-probability regions of H that are enclosed
within B are inferred to be a set of holes Np fNig. These
steps are implemented in the hypervolume R package (ver.
1.3.0 and newer), freely available on CRAN (http://cran.r
-project.org). Specifically, the algorithm carries out the follow-
ing six steps, also illustrated in figure 3.

Step 1: Obtain input data. The algorithm takes as input
a m#nmatrix of m data points in an n-dimensional space.
The correct number and identity of axes must be deter-
mined before analysis. Axes must also be continuous. Cat-
egorical data can be converted to continuous data by ordi-
nation—for example, principal coordinates analysis after
Gower transformation—although caution should be taken
if the transformation is nonmetric. Axes must be on com-
parable scales so that Euclidean distances can be computed—
for example, via rescaling and recentering—relative to a
global range for the axis. Last, data must not have any miss-
ing values along any axis because each observation must be
This content downloaded from 176.01
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placed in an n-dimensional space; observations with miss-
ing measurements can be omitted. Gap-filling techniques
(Rubin 1996; Schrodt et al. 2015) are not recommended be-
cause they will fill in the holes of interest.
Step 2: Compute a hypervolume H that encloses all data

points (hypervolume R function). The algorithm assumes
that the data are sampled from an unknown probability
distribution and then computes a kernel density estimate us-
ing a hyperbox kernel with bandwidth vector b (correspond-
ing to a diagonal smoothing matrix with variable amounts of
smoothing along each axis). Vector values for b are chosen us-
ing the estimate_bandwidth function, discussed inmore depth
below. The algorithm then “slices” through the probability
density function by choosing a quantile value such that the
probability density above a certain threshold value, integrated
across the entire space, is approximately equal to that quantile
value. The algorithm uses a hyperbox kernel that decays to
zero probability density after a finite distance. The resulting
subset of n-dimensional space is inferred to be the hyper-
volume. The algorithm’s output is a stochastic geometry rep-
resentation of the hypervolume RH, constituting a set of rH
uniformly random n-dimensional points that are within the
hypervolume’sboundaries; an inferredvolume,VH; andapoint
density, rHprH=VH . The user chooses a value r such that the
output hypervolume contains approximately rh pmr points;
by default, r p 1,000 n. This algorithm has been described
elsewhere (Blonder et al. 2014).
Step 3: Compute a hypervolume B with stochastic geom-

etry representation RB for the baseline expectation (expec-
tation_convex or expectation_maximal R functions). In the
convex case, the algorithm computes a convex polytope (hull)
that minimally encloses all or a subset of the data points. A
“quickhull” beneath-beyond algorithm (Barber et al. 1996)
is used to infer the hull volume VB. Enclosing all data points
is most accurate but computationally expensive—therefore,
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Figure 2: The detectability of holes varies with dimensionality n and bandwidth choice b. Consider a hyperannulus (black lines) data set
corresponding to a ring in np 2 dimensions and a hollow sphere in np 3 dimensions. A hole is easy to detect in np 2 dimensions (A)
but disappears in np 3 dimensions (B) because bivariate projections obscure interior features.
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the algorithm by default estimates the convex hull on a ran-
dom subset of hB points, weighting points by their distance
from their centroid. By default, hB pmin(m, 10

ffiffi
n

p
) pro-

vides reasonable performance on many data sets. The user
can choose a larger value to improve accuracy or a smaller
value to improve runtime. The algorithm then uses rejection
sampling to obtain a uniformly random set of points RB

from within the convex polytope B. Specifically, the algo-
rithm generates a set of rB uniformly random points from
the minimal hyperbox enclosing all data points and then
tests whether each of these points is “in” or “out” of the con-
vex polytope using a dot product orientation test (D’Errico
2006). To optimize performance for the next step in the al-
gorithm, rB is chosen as the minimum of 10(31

ffiffi
n

p
) and a value

estimated to match the point density of H, rHVH . The user
can also choose a larger value to improve accuracy or a
smaller value to improve runtime. In the maximal case,
the investigator must supply this hypervolume from some
external source of information. An appropriate hyper-
volume can be computed from a set of data points describ-
ing the available n-dimensional space. The algorithm uses
random sampling to select a subset of points RB from B.
The user is recommended to choose rB p rHVH but can
choose a larger value to improve accuracy or a smaller value
to improve runtime.

Step 4: Perform a stochastic geometry set difference Sp
RBnRH to identify holes N (hypervolume_holes function).
First, RB and RH are subsampled to the same point density
rS . By default, the algorithm uses rS pmin(rB, rH , 10

21n=
VB, 1021n=VH). The user can choose a larger value of rS to
improve accuracy or a smaller value to improve runtime.
As previously noted (Blonder et al. 2014), the characteristic
distance d between uniformly random points with density
r in n dimensions is d p r21=n. Thus, a test point in RB is
in S if it is “far away” from RH, that is, if the distance to
every point in RH is at least d. The algorithm performs this
test on all random points in RB to compute the final set dif-
ference, which includes rS random points with a density of
rS and volume VS p rSrS. There may be several isolated
points in S that reflect random points that erroneously were
included in the set difference because there were no random
points in RH that were within a distance d of these points.
Such an effect can occur on the basis of small-number sam-
pling effects. To eliminate these spurious points, the algo-
rithm computes the minimum pairwise distance between
all points in RH. The set of rC points with a minimum dis-
tance greater than d is identified as C. The algorithm then
returns the remaining holes as hypervolume N, defined
as Np S 2 C, with point density rN p rS and volume
VN p rN(rS 2 rC).

Step 5 (optional): Segment unique holes {Ni } from the set
difference (hypervolume_segment function). N contains a
uniformly random set of points sampled from the true dis-
This content downloaded from 176.01
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tribution of holes, but disjunct holes are not distinguished.
To segment unique holes, the algorithm computes the pair-
wise distance between all points in N and then performs
a hierarchical clustering analysis on this distance matrix.
Clusters that are separated by a distance of at least d* are
inferred to be a set of I unique holes {Ni}. By default, d

* p
nd.
Step 6 (optional): Remove small holes (hypervolume_prune

function). {Ni} may contain some holes that do not exist and
have been falsely detected. These holes arise because of
small-number sampling in the various stochastic geometry
algorithms. Any unique holes with volumes beneath a cer-
tain investigator-specified threshold k are considered to
be spurious and removed, resulting in a final set of J � I
holes, {Nj}. Note, however, that this function also will re-
move true holes that are small and should be used with
caution.
Bandwidth Choice

The kernel bandwidth vector b can be varied to reflect the
investigator’s belief about the sparseness of the data set. If
the bandwidth vector elements are small relative to the
number of data points, then each data point will become
disjunct from other points in the kernel density estimate,
and many holes will be inferred. On the other hand, if the
bandwidth vector elements are large relative to the num-
ber of data points, then small holes will not be inferred.
The investigator can manually choose a bandwidth vec-

tor that reflects their belief about the balance between
these two types of uncertainty. For example, if variation
below the scale of measurement exists (e.g., intraspecific
trait variation for a community trait hypervolume), then
the bandwidth vector elements can be chosen to match
this range of variation. Alternatively, the bandwidth vector
can be automatically estimated by minimizing asymptotic
mean integrated squared error of the kernel density esti-
mate relative to the data. The estimate_bandwidth func-
tion provides wrapper functions for a simple Silverman
estimator for axis-wise optimization assuming normally dis-
tributed data (Silverman 1992) and two options for multidi-
mensional optimization: a diagonal plug-in estimator with
two-stage pilot estimation and a prescaling transformation
(Wand and Jones 1994), and a diagonal cross-validation esti-
matorwith a two-stage pilot estimation and a prescaling trans-
formation (Duong and Hazelton 2005).
The plug-in and cross-validation bandwidth estimators

are computationally expensive. They scale exponentially with
n, becoming impractical for more than mp 10,000 data
points and np 6 dimensions. Runtimes exceed 2 hours
on a 2.7-GHz processor for the demonstration analysis of
m ≈ 100 points in np 4 dimensions presented below.
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Thus, the trade-off for increased accuracy in delineating
holes is computational time.
Other Computational Considerations

The algorithm’s performance improves with higher values
of rB (number of random points in baseline expectation),
hB (number of points used to define convex polytope),
and rS (density of points used for set operations). The de-
fault parameters are known to give reasonable performance
for the simulation data sets described below. Higher values,
subject to available computational resources, will always
produce more accurate results. However, very high values
of these parameters are not sufficient to yield perfect perfor-
mance. The hyperbox kernels used in this analysis have
“jagged edges” that yield approximation errors. Such errors
do not tend to zero unless the number of data pointsm also
becomes very large.

The computational complexity of these algorithms fun-
damentally limits the systems for which holes can be found.
In general, stochastic geometry analyses are subject to the
“curse of dimensionality”: a linear increase in the number
of dimensions requires an exponential increase in the
number of random points used internally because higher-
dimensional spaces require more points to fill them. The
most limiting step is the calculation of the convex baseline
expectation. The number of inequality constraints defining
the convex polytope can scale exponentially with n, leading
to very high memory costs and an exponential increase in
the time cost of each rejection sample. Additionally, as n in-
creases, the probability that a rejection sample is “in” also
decreases with n, because increasingly less volume is occu-
pied, leading to an exponential increase in the time cost of
accepting a fixed number of random points. Set difference
calculations can also be limiting when a nonconvex baseline
is used. This calculation scales quadratically with the num-
ber of random points contained in the hypervolume and its
baseline expectation. Because the number of random points
should scale exponentially with n to maintain a fixed point
density, the set difference operations can also scale expo-
nentially in time and memory cost.
Sources of Error

Type I errors where holes are falsely inferred can be inad-
vertently caused by high dimensionality. High-dimensional
spaces become increasingly sparse, such that it is difficult to
“fill out” a data set with enough points that the entire object
does not appear full of holes, whether or not these holes are
real. For data sets that are described by a small number of
points (e.g., a complete census of plants in a plot) or that
cannot be realistically sampled to a higher number of points,
it is not reasonable to examine hypervolumeholes. Thus, holes
This content downloaded from 176.01
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are best detected in hypervolumes with intermediate dimen-
sionality (n � 6 approximately, a range that seems to match
empirical dimensionalities, e.g., for plant ecological strate-
gies; Laughlin 2014).
Bias in data set sampling can also result in type I errors

regardless of dimensionality. If some portions of the n-
dimensional space are undersampled relative to others, then
they will more likely be incorrectly inferred to be empty. For
example, a climate niche may have a hole where environ-
mental conditions correspond to countries in which field-
work was not possible. These “unknown unknowns” (Jack-
son and Overpeck 2000; Jackson 2012) in a data set represent
a fundamental source of uncertainty that affects all inferen-
tial statistical procedures.
Simulation Analyses

I explored a set of simulated data sets to determine whether
the performance of this algorithm is acceptable in real-
world scenarios, asking whether type I and type II error
rates would be sufficiently low for variable combinations
of data set size, dimensionality, and bandwidth choice.
I examined n-dimensional data sets described by m

points sampled from either a solid or hollow hypersphere,
with fixed inner and outer radii rmin and rmax (as in fig. 2).
I ran the algorithm multiple times, comparing observed
hypervolumes to a convex expectation. All other param-
eters were set to default values. I thus constructed a hy-
pervolume with bandwidth b that includes a region A rep-
resenting padding around the original data set:

Aðn; rmin; rmax; bÞ ¼ f x!g⊂ℜn : maxð0; rmin 2 bÞ
� k x!k � rmax þ b:

In general, a hypersphere with radius r in n dimensions has
volume Q:

Q(n, r)p
pn=2rn

G[(n=2) 1 1]
,

where G(x)p (x 2 1)! is the gamma (factorial) function.
Then A has a hole with volume Vneg that can be analytically
calculated as

Vneg(n, rmin, b)p Q(n, max(0, rmin 2 b)):

The overall volume of the hyperannular hypervolumeVann is

Vann(n, rmin, rmax, b)p Q(n, rmax 1 b) 2 Vneg(n, rmin, b):

Suppose now that the algorithm is run on a data set uni-
formly sampled from A(n, rmin, rmax, b) with m points and
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n dimensions with a bandwidth of b, relative to a convex
expectation. Repeat this process t times. Let V*

i (m, n, rmin,
rmax, b) be the inferred volume of holes for each algorithm
run 1 � i � t.

A type I (false positive) error rate, a, for this procedure
can be defined in terms of the volume incorrectly inferred
to be a hole when there are none, relative to the sum of the
incorrectly inferred volume and the true volume of the
hyperannulus:

ap
V *

i (m, n, 0, rmax, b)
V*

i (m, n, 0, rmax, b) 1 Vann(n, 0, rmax, b)

p
1

1 1
Vann(n, 0, rmax, b)
V*

i (m, n, 0, rmax, b)

:

Thus, when V*
i =Vann ! 0, a ! 0 (i.e., 0% type I error

when the inferred hole volume is very small relative to the
true no-hole volume), while when V*

i =Vann ! ∞, a ! 1
(i.e., 100% type I error rate when the inferred hole volume
is very large relative to the true no-hole volume).

An approximate type II (false negative) error rate, 1 2 b,
for this procedure is 1 minus a normalized difference be-
tween the average volume correctly inferred to be a hole
when there is one and the true volume of the hole:

1 2 bp

�
�
�
�

Vneg(n, rmin, b) 2 V*
i (m, n, rmin, rmax, b)

Vneg(n, rmin, b) 1 V*
i (m, n, rmin, rmax, b)

�
�
�
�

p

1 2
V*

i (m, n, rmin, rmax, b)
Vneg(n, rmin, b)

1 1
V*

i (m, n, rmin, rmax, b)
Vneg(n, rmin, b)

:

Thus, when V*
i =Vneg ! 0, 1 2 b ! 0 (i.e., 0% type II error

when the inferred and true hole volume are equal), while
when V*

i =Vneg ! 0 or∞, 1 2 b ! 1 (i.e., 100% type II error
rate when the inferred and true hole volume are very dif-
ferent).

I explored all combinations of mp 100, 200, 400, or
800 data points; np 2, 3, 4, 5, or 6 dimensions; and bp
0:1, a value automatically selected using a Silverman esti-
mator (bp 0:31 5 0:08 SD), or 0.7. In all analyses I chose
rmin p 0:8 and repeated analyses for each parameter com-
bination t p 10 times. I did not perform the optional hole
segmentation and pruning (i.e., steps 5–6 of the algorithm).
I ran each analysis on a 2.7-GHz machine with 8 GB of
RAM using R version 3.1 on Linux.

Results for auto-selected bandwidths are most likely to
reflect default usage cases. Performance in this scenario
was reasonable (fig. 4A–4C). Type I error rates were al-
ways lower than 2% (mean: 0.3%), indicating that the al-
This content downloaded from 176.01
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gorithm rarely detects holes when they do not truly exist.
Type II error rates averaged 39% but were much more var-
iable. Error rates decreased to values closer to 30% for
larger data sets and dimensionalities. Thus, the algorithm
finds many but not all holes when they do truly exist.
In the case of a very small fixed bandwidth (0.1; fig. 4D–

4F ), type I error rates obtained a mean value of 12% and
were always lower than 26%. Type II error rates averaged
17% and were never worse than 32%. The higher type I er-
ror rate likely arises because the hyperannulus is not com-
pletely resolved by the low number of data points—that is,
it inadvertently contains small holes outside of the central
hole that are detected by the algorithm. The lower type II
error rate likely arises because the inner boundary of the
hyperannulus becomes less blocky and jagged when esti-
mated with a lower kernel bandwidth, so that the algo-
rithm is better able to match the true shape of the inner
hole.
In the case of a very high fixed bandwidth (0.7; fig. 4G–4I),

type I error rates obtained a mean value of 0.1% and were al-
ways lower than 1.2%. Type II error rates averaged 81% and
often reached 100%. This situation likely arises because large
bandwidth valuesmean that the hyperannulus is delineated at
a very blocky resolution; thus, the hole cannot be accidentally
detected in the wrong location, but neither can it be properly
detected in the correct location.
These contrasting results at different bandwidth values

demonstrate that the qualitative conclusions taken from
this type of analysis depend sensitively on the bandwidth
used by the investigator. The automatic bandwidth selec-
tor provides reasonable performance, but lower band-
width values can be used to minimize type II error rates,
and higher bandwidth values can be used to minimize type
I error rates.
Across usage cases, the algorithm’s performance was

only weakly sensitive to the number of data points or the par-
ticular random replicate. Thus, analyses do not need to be run
multiple times to obtain robust results and are possible even
on data sets of approximately mp 100 points.
Some of the variation in the scaling of error rates with

dimensionality is due to the heuristics used to select the
internal computational parameters rB, hB, and rS. Overrid-
ing these heuristics and setting higher than default values
will improve both error rates at the cost of longer compu-
tational times. Using default internal parameters, runtimes
(fig. 4C, 4F, 4I ) were under 2 minutes for all analyses of
four dimensions or fewer and were under 2 hours for all
five-dimensional analyses. However, runtimes were approxi-
mately 45 hours for some six-dimensional analyses, suggest-
ing that computational limitations do provide a relevant
practical boundary on when the algorithms can be applied.
These long runtimes are driven primarily by the exponen-
tial scaling with dimensionality of rejection sampling a fixed
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number of uniformly random points from a convex hull and
are independent of this software implementation.
Demonstration Analysis with Empirical Data

As proof of concept, I examined evidence for vacant niches
in the context of invasion ecology. Vacant niches exist in a
community if a region of a community’s trait or morpho-
logical space is empty relative to a convex expectation (fig. 5).
These vacant niches could have several causes, for example,
(1) no colonization yet by an appropriate species in the re-
gional pool, (2) absence of an appropriate species in the re-
gional pool, or (3) prevention of occupation of this region
by species interactions.

To determine whether any of these processes could be
operating, I examinedmorphological hypervolume of a com-
munity of finches co-occurring on Isabela Island (Galapagos)
on the basis of collections from the Snodgrass and Heller
(1904) expedition. Code and data to replicate this analysis
are available by running demo(holes_finch).

The data set includesmp 166 observations for male and
female individuals for eight species along np 4 axes: body
length, wing length, tail length, and beak width. Data were
This content downloaded from 176.01
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standardized before analysis by subtracting axis means
and dividing by axis standard deviations.
I computed a community hypervolume and convex ex-

pectation using default R package parameters and band-
width values that were the default Silverman estimate mul-
tiplied by factors of 0.1 to 2.0, yielding actual values of
bp 0:076 to bp 1:5. I repeated all analyses 10 times for
each value of b to assess uncertainty arising from the sto-
chastic geometry algorithms. I also calculated estimates of
the “correct” value for b using mean values reported by the
Silverman, plug-in, and cross-validation estimators. I did not
perform the optional hole segmentation and pruning.
The ratio between the volume of the detected holes and

the volume of the convex expectation (Vholes/Vconvex) de-
creased as the bandwidth b increased (fig. 6A). Different
bandwidth estimators all led to detection of holes, with very
limited variation across replicate analyses. The Silverman
estimator (mean bp 0:76) led to Vholes=Vconvex p 0:011 5
0:0027 SD, averaged across all replicate analyses. This num-
ber, while apparently very small, actually corresponds to
approximately 0:0111=4 p 32% of each axis being unoccu-
pied. The cross-validation estimator (mean bp 0:60) led
to Vholes=Vconvex p 0:083 5 0:011 SD, corresponding to ap-
proximately 53% of each axis being unoccupied. Last, the
plug-in estimator (mean bp 0:587) led to Vholes=Vconvexp
0:011 5 0:0051 SD, corresponding to approximately 57%
of each axis being unoccupied. Thus, the qualitative infer-
ence (presence of holes) did not depend on the bandwidth
estimator or the replicate analysis.
The presence of holes in the Galapagos finch data set

(with b determined by the plug-in estimator) is readily vis-
ible in a pairs plot (fig. 6B) or rotating three-dimensional
projection (video 1, available online). The regions of mor-
phospace that are empty correspond to a mean centroid
hole location of (body length, wing length, tail length, beak
width) in terms of transformed coordinates (standard devi-
ation above the mean) of (1.56, 1.65, 1.39, 0.87) or in un-
transformed coordinates (mm) of (143, 75, 47, 9). These
values are each occupied along single dimensions, sug-
gesting that single-dimensional analyses would not have
been able to identify this empty region. Additionally, these
coordinates can be used to identify candidate species that
could potentially invade this island. I calculated species-
mean morphology axis values for all individuals collected
by the Snodgrass and Heller (1904) expedition with the
smallest rescaled differences relative to the Isabela Island
hole centroid. Of these, the smallest difference was for
Geospiza scandens subsp. scandens, with species-meanmor-
phological coordinates of (137, 70, 45, 8). This species was
recorded during the expedition as being collected only on
the nearby Santiago Island. Thus, one hypothesis is that
an experimental introduction of this species to Isabela Is-
land might be more successful than that of other finch
Axis 1

A
xi

s 
2

Convex expectationResident species

Invader

Figure 5: Cartoon example of holes mediating invasion. Consider a
hyperspace describing the functional hypervolume occupied by dif-
ferent species in a community. Here four species (blue circles) are
shown relative to the convex expectation (gray polygon). Although
the convex expectation determines the limits to the ecological strat-
egies that are viable in this community, there may still be unoccu-
pied regions of ecological strategy space—for example, the center
gray region. The existence of this central hole suggests that a species
with an appropriate ecological strategy (small red circle) might be
able to successfully invade this community.
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Figure 6: Vacant niche analysis for five species of finch co-occurring on Isabela Island using np 4 morphological axes. A, Hole detection
depends on the bandwidth value b used in the hypervolume analysis. The ratio between the volume of a detected hole and the volume of the
convex expectation (Vholes/Vconvex) is shown for a range of values of b. Boxes represent distribution of 10 replicate analyses of the data set plotted
in B. The mean values of b proposed by different kernel bandwidth estimators (Silverman, plug-in, cross validation) are indicated as vertical
lines. B, Pairs plot for hypervolumes computed using the plug-in estimator for b. Each panel is a two-dimensional projection of the four-
dimensional space. Points represent observed data (black), uniformly random points sampled from the hypervolume (purple), and uniformly
random points sampled from a detected hole (green). Lines represent approximate contour boundaries for each two-dimensional projection of
the four-dimensional space. A three-dimensional projection of this hypervolume is animated as video 1 (available online).
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species; alternatively, the hole centroidmay indicate an eco-
logical strategy that is not viable on Isabela Island for other
reasons, for example, lack of resources available to an or-
ganism of such morphology.

The point of this demonstration analysis is not to pro-
pose that specific experiments should be carried out in the ab-
sence of more detailed knowledge of these finches’ biology.
The point is also not to ascribe particular causes to observed
patterns. Rather, this analysis highlights the utility of the
hole-detection approach for generating novel types of hy-
potheses. It also shows that well-known data sets may be de-
scribed in terms of hypervolumes with holey geometries that
are potentially consistent with unexplored mechanisms.
Guidance on Usage

The algorithm can be used on data sets of at least mp 100
observations in n � 6 continuous dimensions. A rule of
thumb is that holes can be detected successfully when
loge(m) 1 n. In these cases, for a given choice of bandwidth
vector b, detecting a hole very likely indicates that an empty
region exists in the hypervolume, while detecting the ab-
sence of a hole probably (but not certainly) indicates that
no empty region exists in the hypervolume. A good value
of b can be automatically chosen using a Silverman estima-
tor at very low computational cost. Better estimates of b can
be obtained using a plug-in or cross-validation estimator
with the trade-off of very high computational cost. In cases
of small data sets, the investigator must be content with a
This content downloaded from 176.01
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fairly high type II error rate (low power). Future mathemat-
ical insights will hopefully improve the situation further.
Looking Forward

Holes may be present but not yet detected in many data
sets. To address this problem, I have provided a first set
of concepts and algorithms that can be applied across bi-
ological scales and axes. The open challenges are now to
begin detecting the presence and absence of holes and to
develop models of ecological and evolutionary dynamics
that make specific predictions for the conditions under
which such holes are expected. Holes may not often ex-
ist—but we will not know until we begin to look.
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