
reproductive benefits, for example if they
have an partner who is infertile, a condition
that affects an estimated 6% of all men
[10]. Supporting evidence for this adaptive
‘fertility assurance’ hypothesis comes
from a study on couples where the hus-
band suffered from male infertility, where
29% of the conceptions following a fertility
treatment were found to be derived from
extra-pair sexual interactions [11]. If
approximately one third of all women with
an infertile partner would pursue EPCs as
a specific strategy to become pregnant,
we would expect this to result in an EPP
rate of approximately 6%/3 = 2%, which is
in the ballpark of both contemporary and
historical EPP rate estimates (Figure 1).
Under this hypothesis, EPP rates would
be expected to remain approximately con-
stant, and would be largely independent of
the reliability of available contraception
because the intention of woman in this
case would be to become pregnant of
an extra-pair mate.

Overall, it is clear that further research will
be necessary to conclusively decide
between these alternative hypotheses
for why EPCs occur in humans, and what
the motivation and possible adaptive value
could be behind their occurrence.
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Letter
Pushing Past
Boundaries for Trait
Hypervolumes: A
Response to
Carmona et al.
Benjamin Blonder1,*
Functional diversity (FD) has a key role
in community assembly [1], biodiversity
conservation [2], and ecosystem
functioning [3]. Carmona et al. [4] recently
proposed an approach for quantifying FD
across scales using a probability density
function (PDF; the distribution of values
Trends in 
along one or more functional trait axes)
to better measure functional redundancy,
overlap, and dissimilarity. Their work is
timely because it builds on a growing inter-
est in making biological inferences from
functional traits, and is useful because it
unifies functional diversity concepts. How-
ever, their approach may lead to inaccu-
rate inferences because of statistical
issues around using PDFs to infer trait
distribution boundaries, and around
transforming data.

Carmona et al. propose a fully probabilistic
interpretation of trait distributions - that is,
one where distributions do not have
boundaries (Figure 1A) [4]. However, their
illustrations are drawn with boundaries (e.
g., their Figure 2 [4]). In general, when
using PDFs for statistical inference, distri-
butions are better understood when
edges are delineated at a certain proba-
bility thresholds (Figure 1B). These edges
allow for proper quantification of space
within the PDF and, as such, are crucial
when using PDFs to estimate FD metrics,
such as richness (total space occupied)
and redundancy (number of species per
unit space occupied). If a threshold is not
used to delineate edges, and the proba-
bility density estimated with a Gaussian
kernel or any other function with non-zero
probability density everywhere, then
hypervolumes will have infinite boundaries
that are not useful for analysis. Thresholds
can be chosen either by fixing a value [5] or
by using an algorithm [6]. Importantly, the
choice of threshold can change the size
and shape of the trait distribution, leading
to different values of FD metrics and dif-
ferent inferences (e.g., overlap or no over-
lap) (Figure 1B).

Another issue in working without bound-
aries via a fully probabilistic assumption
is that trait distributions must integrate to
one, potentially leading to the biologically
unrealistic overlap of multiple traits.
Traits with wide ranges are forced into
distributions that take very low values
over most of their ranges, even if biolog-
ical performance is high over that range.
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Figure 1. Contrasting Two Approaches for Trait Hypervolumes. The two example trait distributions are shown in purple (A) or magenta (B), with overlap indicated
in red. (A) The probabilistic approach proposed by Carmona et al. [4] calculates a unique overlap value as the area of intersection between two distributions. When one
distribution is much wider than another, this fractional value is always low. Additionally, because both distributions continue to infinite trait values, neither distribution can
be assigned a clear boundary, making it difficult to quantify size. (B) The semiprobabilistic approach delineates boundaries at a selectable probability threshold.
Depending on the threshold chosen, the size of each distribution (jAj and jBj; horizontal colored lines) can differ, with higher thresholds generally leading to smaller sizes.
Multiple overlap metrics (e.g., intersection as fraction of A and B or intersection as fraction of either A or B) can be calculated, providing additional insight into the type of
overlap that is occurring. For some thresholds, the overlap may decrease to zero, providing a more detailed view of the shape of each distribution.
Overlap metrics will also always be low
when one distribution is contained within
another (Figure 1). Performing algebraic
operations (e.g., weighted means or dif-
ferences) on trait distributions is better
achieved through thresholding distribu-
tions on functions that do not sum to
one.

Carmona et al.’s conceptual approach for
measuring functional redundancy can also
be made more robust. They propose to
count species in trait bins, weighted by the
probability of that trait value [4]. Given that
they estimate the trait probability density
and number of species per bin from the
same data source, combining these two
quantities produces no more information
than using either alone. Data binning also
666 Trends in Ecology & Evolution, September 2016, Vol. 3
loses information (as with histograms)
and, therefore, functional redundancy
can be measured more simply and accu-
rately as the local probability density value
at any point in the trait space.

Software tools already exist for estimating
probabilistic thresholded n-dimensional
hypervolumes for Gaussian distributions
[7,8], for Gaussian mixture distributions
[9], and for arbitrary geometries [5,10].
These tools scale well in high dimension-
alities and permit analysis of large empiri-
cal data sets.

The data transformations proposed by
Carmona et al. could lead to incorrect
inferences. In particular, they propose that
unscaled continuous data can be used for
1, No. 9
analyses [4]. However, doing so would
render results incomparable since their
framework relies on calculating Euclidean
distances and overlaps. Euclidean dis-
tance is only defined if all axes have the
same units (e.g., meters). Thus, choosing
dimensionless or common units is neces-
sary. Data with incomparable units should
be rescaled (e.g., via z-transformation)
before analysis.

Carmona et al. also propose to integrate
categorical and ordinal variables by dis-
similarity-based ordination [4]. These var-
iables must be handled carefully. Volume,
distance, and overlap concepts require a
metric distance, that is, one that satisfies
the triangle inequality (where the trait dis-
tance from species or community A to C is



no greater than the distance from A to B
plus the distance from B to C). Without a
metric distance, if A and B are similar and
B and C are similar, there is no guarantee
that A and C will also be similar. In general,
basing functional diversity calculations on
distances from non-metric dissimilarity
coefficients will lead to non-interpretable
results. Probabilistic approaches should
only be applied to continuous axes or to
categorical axes where the triangle
inequality is satisfied for distances. Gower
dissimilarity has this property [11] and can
be used for mixed categorical/continuous
data, but many other metrics do not.

In summary, the conceptual framework
proposed by Carmona et al. proposes a
useful and novel research agenda, but is
limited by the approaches that have been
proposed to implement it. Fortunately,
these limitations can all be overcome in
the ways outlined above. By building on
the robust tools that already exist for
addressing this research agenda in a
semiprobabilistic framework, trait-based
ecology may come closer to reaching its
goals [12].
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Letter
The Density
Awakens: A Reply to
Blonder
Carlos P. Carmona,1,*
Francesco de Bello,1,2

Norman W.H. Mason,3 and
Jan Leps ̌1,4

In a recent review [1], we presented a
framework to estimate functional diversity
(FD) across multiple scales using trait
probability distributions (TPD). We are
pleased to see that this approach has
sparked interest quickly, particularly with
Blonder's comment [2] acknowledging its
utility. Particularly he raises a series of
technicalities which, we agree, need to
be considered when applying the frame-
work, but which we did not have space to
deal with in our original article. We address
these technicalities in this letter.

In our view, the most relevant issues are
the definition of ‘boundaries’ in TPD func-
tions and the effects of trait data scaling
and transformation. We recognise the
importance of defining probability thresh-
olds to delineate boundaries in TPD func-
tions, an issue that applies to any attempt
to estimate some FD metrics, such as
functional richness [3]. As far as we are
Trends in 
aware, defining the boundaries of occu-
pied trait space is an arbitrary exercise,
with different thresholds and methods
possible. Blonder [2] helpfully suggests
that our framework could be coupled with
multiple boundary definitions to allow a
new class of FD-related questions [4].
Thus the availability of multiple possible
thresholds can be viewed as much an
opportunity as a problem. The main con-
sideration is to clearly explain how bound-
aries are defined so that analyses are
repeatable. In general, to obtain a stable
estimate for boundary-dependent met-
rics, we advise to capture the vast majority
(e.g., �99%) of the total TPD. However,
the most appropriate threshold might vary
depending on the questions addressed
and the ecological context. This is an area
that could greatly benefit from future
research.

We are aware that trait scaling can affect
several measures of FD [5] and a variety of
standardizations are already available in
the literature [6]. It should be noted that
in our framework only functional diver-
gence depends on the estimation of dis-
tances [1,6]. As such, our framework is,
on the whole, scale-invariant (Figure 1).
Indeed, we have previously shown that
estimates of functional dissimilarity based
on TPD overlap are independent of data
transformation [7].

Blonder [2] raises concerns on some tech-
nicalities of our framework but we do not
think they should worry users. We firmly
reject his criticism of integrating TPD func-
tions to unity. When trait values are con-
centrated in a particular portion of its
range, then high density values are still
possible. For example, the global spec-
trum of plant form and function [8] shows a
highly concentrated occupancy of trait
space within the widest possible range
along with much less densely occupied
areas. We feel it is by far preferable to
let the distribution of density be wholly
defined by the data rather than allowing
it to be influenced by an arbitrary decision
on where to place boundaries. We could
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