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the hypervolume concept has been operationalized, synthe-
sizes recent efforts for making the concept measurable, and 
delineates the contexts in which hypervolumes are useful, 
and when they are not.

A modern definition of the hypervolume

It is useful to begin with a general mathematical definition 
that can unify these different usages (Fig. 1B). A hypervolume 
function can be defined as a function h(x) mapping from an 
n-dimensional Euclidean space to a 1-dimensional Euclidean 
space, as h x n( ) →:R R . The domain of this function may 
be restricted to a finite region X n⊆ R , and corresponds to 
the possible values of axis combinations. The range of this 
function is always limited to non-negative values, and cor-
responds to possible biological states (e.g. absent/present, 
rare/prevalent, improbable/probable). It is also assumed 
that the hypervolume function has a finite integral H, i.e. 

h x dx H
X

( ) = < ∞∫ . This allows the hypervolume function 
to be considered as a probability density function (p.d.f.) by 
normalizing the hypervolume function to h x H( )/ .  Data 
samples can be used to estimate h x( ),  but these data do not 
in themselves define the hypervolume function.

The hypervolume function can then be summarized 
by several metrics. First, a metric for a ‘boundary’ can be 
defined as a level set q of h(x), defining points x that satisfy 
h x q( ) =  (Fig. 1 C, D). Second, a metric for a ‘volume’ can 
be defined as the size of the region X Xq ⊂  enclosed by the 
boundary, i.e. a value X dxq Xq

= ∫  such that for a value q, 

∀ ∈ ( ) ≥x X h x qq ,  (Fig. 1E). The region X q  itself defines 
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The n-dimensional hypervolume was originally proposed by 
Hutchinson (1957) to describe the fundamental niche of 
a species. These hypervolumes exist within a space defined 
by a set of n independent axes. The hypervolume is then 
defined as a subset of the space, i.e. an n-dimensional 
geometrical shape (Fig. 1A). Hutchinson suggested that 
the axes correspond to requirements of the species (e.g. 
food size, temperature) and that the boundaries of the 
shape indicate the conditions that permit the growth and 
reproduction of the species. The concept can be found 
illustrated in biology textbooks (Begon et al. 2006) and has 
gained wide usage as well as extensive discussion (Chase 
and Leibold 2003, Colwell and Rangel 2009, Holt 2009, 
Peterson et al. 2011).

Because this geometrical concept is apparently simple 
and easily explained, it has been applied to other contexts 
where the shape does not represent a niche and the axes do 
not represent limiting conditions. That is, hypervolumes 
can be defined using many types of axes (limiting resource, 
competition parameters, climate, resource, functional trait) 
and for many systems (individuals, populations, species, 
communities, clades, regions) (Table 1). The hypervolume 
concept has therefore come to inspire a range of other research 
areas throughout ecology and evolutionary biology (Peters 
1991, McInerny and Etienne 2012, Garnier et  al. 2016), 
e.g. in niche-based ecology, functional ecology, community 
phylogenetics, coexistence theory, and morphometrics.

This paper surveys the scope of uses of the hypervolume 
concept across ecology and evolution, identifies the com-
mon limitations and opportunities across all these uses, 
and provides guidelines on how best to use hypervolumes 
subject to these limitations. In this process it explores how 
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a geometric shape that corresponds to Hutchinson’s original 
concept of a hypervolume, and defines a uniform probability 

density function, h x
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There are two general cases for h(x). First, if h(x) is binary 
and obtains only the values 0 or 1 (e.g. ‘absent’ or ‘present’), 
then there is only one possible non-zero value of q, and 
thus the shape of the hypervolume function is specified as 
a uniform probability density function h xq = ( )1 . The region 
X q =1  can be interpreted directly as an n-dimensional shape, 
corresponding exactly to Hutchinson’s original idea. This 
approach effectively assumes that all points in the hyper-
volume are equally likely or suitable, and allows the use of 
geometrical concepts to describe the hypervolume.

Second, if h(x) is not binary, it may obtain a continu-
ous range of values, there are many possible values of q, and 
h(x) is specified as an arbitrary probability distribution func-
tion. As a result, there are multiple possible boundaries and 
volumes and shapes that depend on the value of q that is 

chosen. This interpretation allows for variation in the likeli-
hood of points within the hypervolume, permits the use of 
probabilistic theory and concepts to describe a hypervolume 
(Blonder et  al. 2014, Carmona et  al. 2016a). Geometrical 
concepts can also be used to describe the hypervolume once 
a particular value of q is specified.

Applications of the hypervolume concept

Hypervolume concepts underlie many areas of research. 
Hutchinson’s inspiration for the geometrical hypervol-
ume concept likely comes from the work of Grinnell, 
who originally described niches in terms of a set of mul-
tiple limiting factors at different points on the landscape 
(Grinnell 1917). The central insight of Hutchinson (1957) 
was to transfer these niche concepts from an explicitly 
geographical context to an abstract geometrical context 
(Colwell and Rangel 2009). This definition led to a com-
mon conceptualization of hypervolumes as geometrical 

Figure 1. Comparison of original and modern hypervolume concepts. A) Hutchinson’s original concept, as illustrated for the fundamental 
niche of a squirrel. Redrawn from Hutchinson (1978) with permission. The hypervolume is depicted as a rectangular geometrical region. 
B) A modern understanding of the hypervolume function – here, two example functions hA(x) and hB(x) – allows for more complex 
geometries and variation in function value (shown with higher probability regions in brighter colors) over a region of hyperspace X. C) A 
threshold value – here q  q1 – can be used to delineate a contour boundary and shape for each hypervolume function. D) Changing the 
threshold value (here, q  q2) yields a different contour boundary and shape for each hypervolume function. E) a metric of the volume can 
be calculated as the region enclosed by each contour boundary, |Xq|. F) A metric of overlap can be calculated as the volume of the region of 
intersection between h(x) functions for a certain threshold value provides. G) The presence, size, and shape of holes varies with threshold 
value. F) The value of h(x) can be evaluated at different points (star and triangle in panel B) and used as a metric of probability of suitability. 
I) Geographic maps can be obtained for niche applications by projecting discretized values of h(x) from the n-dimensional space to spatial 
pixels.
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shapes that in turn provided inspiration for many other 
applications.

Niche modeling

Hutchison’s fundamental niche concept is relevant to 
the geographic distribution of species, but requires some 
extension. Species may occur in subsets or supersets of the 
fundamental niche because of variation in the conditions 
necessary for regeneration, establishment, or persistence 
niches (Grubb 1977). Moreover, dispersal limitation and 
biotic interactions may limit species to realized niches that 
are subsets of the fundamental niche (Hutchinson 1957, 
Pulliam 2000). Similarly, these realized niches are constrained 
by potential niches, which were developed to describe the 
set of possible conditions X available at any point in time 
(Jackson and Overpeck 2000). All of these processes may 
change the form of h(x), but fundamentally remain rooted 
in a hypervolume context.

Hypervolume concepts have also now been used to 
describe potential niches and the envelopes of climate space 
that constrain realized niches (Jackson and Overpeck 2000, 
Soberón and Nakamura 2009), as well as establishment 
and persistence niches that take into account different 
demographic and dispersal processes (Araújo and Guisan 
2006), with consensus converging on the utility of these 
approaches being for modeling the suitability rather than 
actual distributions of species (Holt 2009).

The modeling of realized climate niches has been an 
immediate area of growth for the hypervolume concept 
that stemmed from early observations that species distribu-
tions often occur along limited subsets of environmental 
or elevation gradients (von Humboldt 1807, Shreve 1911, 
Whittaker and Niering 1965). Early realized niche models 

were probabilistic and constructed using order statistics or 
distribution moments (for birds, Van Valen 1965, and for 
protozoa; Maguire 1967). Discriminant analyses were also 
then used to describe hypervolumes of mollusks (Green 
1971). Further developments likely were an outgrowth of 
growing interest in gradient analyses (Whittaker 1967) and 
ordination (Austin 1985, ter Braak and Prentice 1988).

Modern probabilistic realized niche and species distribu-
tion modeling applications can be re-cast in terms of these 
hypervolume concepts (Franklin 2010, Peterson et al. 2011). 
The first modern probabilistic and geometrical hypervol-
ume model was probably developed for realized niches 
of Eucalyptus species (Austin et  al. 1990). Subsequently, 
BIOCLIM, a geometrical approach (Booth et  al. 2014, 
Busby 1991), was developed to model realized niches. These 
methods have inspired the development of a larger set of 
modern correlative approaches (see reviews by Elith et  al. 
2006, Peterson et al. 2011).

There also have been some experimental measurements 
of fundamental niches by exploring factorial combinations 
of axes values. The hypervolume then is typically consid-
ered in terms of a number of range constraints (Hutchinson 
1978), e.g. air temperature above a lethal minimum and 
below a lethal maximum (Araújo et  al. 2013). The earli-
est measurements actually predated Hutchinson’s work and 
were carried out for a small set of axes for the fundamen-
tal niches of two beetle species (Birch 1953). Many other 
experimental efforts have followed, usually restricted to a 
small set of niche axes for practical reasons (Colwell and 
Fuentes 1975). For example, fundamental niche hypervol-
umes have been estimated with this approach for Daphnia 
magna (Hooper et al. 2008).

Process-based niche concepts and species distribution 
models have been developed that begin to move beyond hyper-
volumes, though some still have hypervolume interpretations 

Table 1. Examples of the diversity of research questions that have been addressed using hypervolume concepts across scales and axes types, 
drawing from recent literature.

Axis type Scale Hypervolume term Research topic Example reference(s)

Climate Species Niche How do realized niches shift under biological 
invasions?

Broennimann et al. (2007), 
Tingley et al. (2014)

Climate Community Niche Do communities comprising species with 
narrow realized niches indicate stronger 
environmental filtering?

Blonder et al. (2015)

Climate Clade Niche How has long-term climate change shifted 
the fundamental niches of related species?

Evans et al. (2009)

Climate Region Niche How has short-term climate change limited 
the overall climate space and realized 
niches of species over time?

Jackson and Overpeck (2000)

Functional trait Species Functional diversity When is intraspecific trait variation larger 
than interspecific trait variation, and why?

Hulshof and Swenson (2010)

Functional trait Community Functional diversity Do communities’ functional richness and 
overlap indicate different assembly 
processes?

Cornwell et al. (2006), 
Lamanna et al. (2014)

Functional trait Clade Functional diversity What is the overall ecological strategy space 
of different clades?

Díaz et al. (2016)

Functional trait Region Functional diversity How do climate gradients explain patterns of 
functional richness across landscapes?

Šímová et al. (2015), 
Swenson et al. (2012)

Allele frequency Population Fitness landscape How difficult is evolution from one complex 
phenotype to another?

Gavrilets (1997)

Morphological trait Species Phenotype space What are the biophysical limits to possible 
phenotypes?

Raup and Michelson (1965)

Morphological trait Clade Phenotype space Why do some clades diversify into larger 
morphospaces than others?

Sidlauskas (2008)
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In functional ecology, traits are often taken proxies for 
niche axes (Kraft et al. 2008, Swenson et al. 2012, Lamanna 
et al. 2014) and used to calculate distributions and hypervol-
umes whose statistical properties are used to infer commu-
nity assembly processes. In this context, community-scale 
trait hypervolumes that are loosely packed together or that 
have large sizes are thought to indicate competitive processes 
that displace species in trait/niche space (Weiher and Keddy 
1995, Weiher et al. 1998, Kraft et al. 2007, Lamanna et al. 
2014). Functional trait hypervolumes have also been used 
to predict and explain species invasions via vacant niche 
concepts (Herbold and Moyle 1986, Moles et  al. 2008, 
Van Kleunen et  al. 2010), on the assumption that species 
with more similar hypervolumes are more likely to experi-
ence competition with resident species (Weiher et al. 1998, 
Swenson and Enquist 2009). These perspectives have all 
received extensive criticism because of the weak, or gener-
ally untested, linkage between traits and niche differentia-
tion and trait space and niche space (Kunstler et al. 2012, 
Kraft et  al. 2015, D’Andrea and Ostling 2016, Shipley 
et al. 2016). There is also uncertainly regarding the multiple 
assembly processes that could yield the same phylogenetic 
or trait pattern. It was long thought that differences among 
species tend to promote coexistence and reduce the effect 
of competition. It is now clear that the reverse is often true, 
that some differences among species can make competition 
strong and coexistence difficult (Mayfield and Levine 2010). 
Coexistence theory that does not rely on hypervolume niche 
concepts (Chesson 2000, Letten et al. 2017) may ultimately 
be more successful.

Nevertheless, geometrical hypervolume concepts have 
seen wide successful use in functional ecology for primar-
ily descriptive applications. Much of the motivation for this 
work has roots in Hutchinson’s niche hypervolume-based 
exploration of the limits to species richness and to the idea 
that species need to be, to a certain degree, functionally dif-
ferent to coexist (Hutchinson 1959). Axes are often chosen 
to represent strategy axes for the taxa of interest (McGill 
et  al. 2006, Westoby and Wright 2006), e.g. the fast-slow 
tradeoffs proposed for plants (Grime 1977, Westoby 1998). 
After an initial development of functional diversity indi-
ces applicable to single trait axes (Mason et al. 2005, Lepš 
et  al. 2006), hypervolume approaches were pioneered to 
extend these concepts to multiple dimensions (Villéger 
et  al. 2008, Mouchet et  al. 2010, Carmona et  al. 2016a). 
Such trait-based hypervolumes have been used to describe 
biogeographical (Swenson et al. 2012, Lamanna et al. 2014, 
Šímová et al. 2015), fire (Pausas and Verdú 2008), succes-
sional (Loranger et al. 2016), and land use (Laliberte et al. 
2010) gradients in functional diversity. They have also been 
used to summarize the occupancy and overlap of ecological 
strategy spaces, e.g. for plant phenotypes (Díaz et al. 2016) 
and for domestication (Milla et al. 2015), and to characterize 
trait distributions for dynamic global vegetation models (van 
Bodegom et al. 2014).

Evolutionary applications

Separately, the geometrical hypervolume concept has been 
used as a tool to address evolutionary and phylogenetic 

(Pulliam 2000). This includes models that incorporate spa-
tial effects (Phillips et al. 2006, Renner and Warton 2013), 
and those that incorporate demographic processes (Hooten 
and Wikle 2008, Cabral and Schurr 2010, Soberón 2010, 
Nenzén et al. 2012), dispersal limitation (Hooten and Wikle 
2008, Engler and Guisan 2009), and species interactions 
(Pollock et  al. 2014, Mod et  al. 2015, Anderson 2017). 
A recent comparison of some of these approaches is avail-
able in Zurell et al. (2016). Dynamic energy budget models 
for fundamental niches also move beyond the limits of the 
hypervolume concept, because possible density dependence 
among different life stages, e.g. as in models for herpeto-
fauna (Kearney and Porter 2004, Porter and Kearney 2009) 
and corals (Hoogenboom and Connolly 2009). Similarly, 
general demographic / population modeling approaches for 
defining realized niches may incorporate density-dependent 
effects of species on themselves and on others that do not 
readily correspond to Euclidean niche axes (Chesson 2000). 
Additionally, multidimensional overlap metrics for h(x) may 
not be predictive of interspecific competition, because com-
petition may depend only on single niche axes or instead on 
biotic interactions (e.g. parasites) not described by the niche 
space (Holt 1987).

The zero net growth isocline approach (Tilman 1977, 
Chase and Leibold 2003) provides a hybrid framework that 
retains some of the geometrical and population dynamic 
aspects of niches and may continue to be valuable for bridg-
ing these divides. In this approach, species occur in environ-
ments where they draw down resources in ways that render 
them competitively superior or able to coexist with others, 
and are absent from those in which resources are insufficient 
(Godsoe and Harmon 2012). Nevertheless, reconciling envi-
ronmental axes (which do not change with biotic context) 
and resource axes (which do) in a unified framework remains 
challenging. It is not clear that geometric or probabilistic 
concepts should or could map onto realized niches defined 
by the outcomes of species interactions. There is a clear need 
for more careful process-based niche models.

Functional and community ecology

Another prominent usage of geometrical hypervolume-based 
fundamental niches has been in for species coexistence and 
community assembly. MacArthur and Levins (1967) pio-
neered an influential model for community assembly based 
on the competitive exclusion principle (Gause 1934). Their 
model yielded a prediction of limiting similarity, in which 
species with fundamental niches that were too close together 
could not coexist. The main consequence of this model was to 
make prominent the idea of geometric ‘niche packing’ of spe-
cies as a conceptual approach for understanding species coex-
istence and richness limits (May and Arthur 1972, Rappoldt 
and Hogeweg 1980, Abrams 1983). This in turn inspired a 
controversial body of work on the importance of competi-
tion and limiting similarity in structuring species assemblages 
(Diamond 1975, Connor and Simberloff 1979, Diamond 
and Gilpin 1982). This work has also resulted in various tests 
using character displacement as a proxy for niche differentia-
tion (Stubbs and Bastow Wilson 2004, Huntley et al. 2008, 
Cornwell and Ackerly 2009, Götzenberger et al. 2012).
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shifts in opinion about the utility of the concept for realized 
or fundamental niche modeling (Holt 2009, McInerny and 
Etienne 2012), which in turn has shaped support for other 
applications of the concept. However statistical estimation 
of hypervolume functions from data requires computational 
resources that may not have been available until relatively 
recently, limiting past interest in applications. Additionally, 
only recent have informatics initiatives made it possible to 
compile and share the large datasets needed to estimate trait 
(Jones et al. 2009, Kattge et al. 2011) or niche (Soberón and 
Peterson 2004, Enquist et al. 2016) hypervolumes, though 
data limitations remain important especially for resource 
axes (Miller et  al. 2005). As a result, interest in hypervol-
umes and applications of the concept are rapidly growing. 
We summarize some key recent studies across research areas 
in Table 1, highlighting variation in underlying research 
questions, axis definitions, and scale of application.

Mathematical operations using 
hypervolumes

The overall geometry and boundaries (limits/constraints) of 
h(x) can be quantified using geometrical metrics (Fig. 1C, 
D). For example the elongation of the hypervolume can be 
determined via the ratio of its longest principal axis length to 
its shortest principal axis length, and its compactness via the 
ratio of its volume to the volume of the minimum convex 
hull enclosing the hypervolume. Such metrics can provide 
insight into constraints on the processes generating the 
hypervolume, e.g. developmental constraints on body plans 
in morphospaces, strength of environmental filters in climate 
niches, resource drawdowns for zero net growth isoclines, or 
correlated selection in functional spaces.

The volume can be measured by finding the area enclosed 
by contours of h(x) (Fig. 1F). This operation allows estimation 
of niche size and breadth for niche axes, or of functional 
richness for traits axes.

The overlap can be measured between two hypervolumes 
h1(x) and h2(x) by defining a function g(h1(x), h2(x)) that 
also satisfies the definition of a hypervolume function 
(for example, g(h1(x), h2(x))  h1(x)  h2(x)) (Fig. 1G). 
Additionally, it is possible to calculate a range of symmet-
ric or asymmetric similarity indices based on volume ratios, 
e.g. Jaccard, Sørensen, unique fraction indices (Blonder et al. 
2014), overlap index (Junker et  al. 2016)), or for niches, 
resampled geographic species distributions (Broennimann 
et al. 2012, Godsoe and Case 2015). These overlaps can be 
useful for studies of niche overlap and phylogenetic niche 
conservatism, and can be weighted for community-scale 
hypervolumes to account for variation in species abundance 
(Colwell and Fuentes 1975, Carmona et al. 2016a, Blonder 
et al. 2017).

Geometrical holes in h(x) can be detected (Fig. 1H). 
These holes are defined as regions within X that have low/
zero values of h(x) and represent unrealized combinations 
of axes. In functional spaces, they can indicate a range of 
biological processes, e.g. forbidden strategies or invasion 
opportunities in functional spaces, allowing determination 
of whether invader species are similar to resident species. For 
realized niches, they can determine whether novel climate 

related questions. Hypervolume-based niche concepts were 
also translated to applications in phylogenetic community 
ecology. In this context, under a further assumption of phy-
logenetic niche conservatism (Wiens and Graham 2005), 
more related species should have more similar or closely 
packed hypervolumes, in term of fundamental niches and 
functional traits, and therefore be less likely to co-occur 
if competition is a major factor structuring communities 
(Webb et al. 2002). In practice, however, differences between 
species in terms of niches, traits and phylogeny often do not 
follow the same patterns (Mason and Pavoine 2013).

Similarly, hypervolume concepts have been used to 
describe phenotypic morphospaces (Raup and Michelson 
1965, Warheit et al. 1999, Wainwright et al. 2004, Stayton 
2005). They were then also used to compare phenotypic 
evolution within and across clades (Gould 1991, Shen et al. 
2008, Díaz et al. 2016). The concept of a fitness landscape 
defined over multiple allele frequency or phenotypic axes, 
while independently developed (Wright 1932), is clearly 
similar to the hypervolume concept in that it defines a non-
negative function h(x) with geometrical interpretation, but 
with values corresponding to fitness rather than probability. 
Hutchinson’s concepts also have indirectly inspired a body of 
work on phenotypic evolution on high-dimensional fitness 
landscapes, which may potentially include hypervolume-like 
geometrical features such as holes (Gavrilets 1997, Laughlin 
and Messier 2015). Nevertheless, the linkages between 
Hutchinsonian hypervolumes and fitness landscapes still 
remain incompletely explored.

Other applications

Hypervolumes also underlie work in paleoecology and climate 
change science. The realized niches of species are limited by 
the availability of climate conditions at any moment in time. 
As the climate changes, so do the conditions available for life, 
effectively leading to ‘clipping’ of the edges of realized niche 
hypervolumes (Austin et al. 1990). This perspective has led to 
a range of probabilistic and geometrical hypervolume models 
for understanding realized niche shifts in response to climate 
shifts (Jackson and Overpeck 2000) or invasion of novel 
habitats (Broennimann et al. 2007, Tingley et al. 2014).

Last, geometrical hypervolume concepts have also recently 
been used to understand ecosystem/community state stabil-
ity (Barros et al. 2016). In this framework a system can be 
defined in terms of multiple state variables (e.g. the abun-
dance of different species in a community, or the weighted 
means of different trait values) and variation in these state 
variables over time can be quantified. Temporal variation 
in these state variables can be used to delineate a hypervol-
ume, and is closely linked to concepts of ecosystem stabil-
ity (Beisner et  al. 2003), where smaller volumes represent 
more stable systems and shifts in these volumes represent 
transitions to alternate states.

Current challenges

Despite Hutchinson’s concept being developed more than 
half a century ago, many of these applications have only been 
developed over the past decade. Part of this is probably due to 
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less tractable if the identity of axes depends on the biotic 
context for the system, e.g. if temperature is a niche axis for 
an animal species at high population densities but not at low 
densities (Holt 2009). In these cases the geometric concep-
tion of a hypervolume can become less useful.

The hypervolume axes must comprise continuous vari-
ables. This is necessary in order to work within the definition 
of a Euclidean hyperspace, and to be able to calculate over-
laps and volume integrals. While ordered factors can be used 
by representing them as integer codes (e.g. ‘low/medium/
high temperature’ becomes 1,2,3), their inclusion is not rec-
ommended and makes it difficult to make precise definitions 
of the size of a hypervolume. Typically in these cases, ordered 
factors would be ordinated to continuous via a Gower trans-
formation (Gower 1971). Alternatively it is possible to con-
struct a notion of volume as a fractional occupancy of each 
factor level (Whittaker et al. 2014). Regardless, the hyper-
volume concept cannot be used with unordered factors, e.g. 
(‘site A/B/C’) where distances between values are not well 
defined.

The hypervolume also assumes that all axes contribute 
independently and equally to Euclidean distances and vol-
umes. It also means that even if one axis contributes more 
to a biological performance variable (e,g. an ecosystem flux 
or organismal fitness) it is given equal weight in the hyper-
volume. This issue can be partially circumvented by scaling 
values along individual axes.

Hypervolume also must have axes with comparable units, 
because distances and volumes require summation and sum-
mation can only proceed on variables with the same units. 
Typically axes with units are log-transformed or z-trans-
formed to unitless coordinates before use in an analysis so 
that volumes or overlaps can be defined (Lamanna et  al. 
2014, Carmona et al. 2016b). Log-transformation is trans-
ferable to new datasets, while z-transformation depends on 
the data. Regardless, in species distribution models where 
hypervolume models are not examined for their own proper-
ties but used instead to make predictions of species presence 
in geographical landscapes, describing volumes or distances 
is not a relevant question, and variables with different units 
can be treated with their units implicitly considered as 
dimensionless.

Conceptual limitations of hypervolumes

A central issue is whether a static geometrical model is suf-
ficient to describe the system of interest. For realized niche 
hypervolumes, this issue translates to a question of whether 
intraspecific or interspecific density dependence is impor-
tant. Such biotic context dependence would mean the hyper-
volume would change depending on the system’s population 
dynamics in ways not described by adding additional axes to 
the hypervolume, e.g. if different life stages respond differ-
ently to density (Holt 2009). For functional hypervolumes, 
the same issue holds: when axes identity or number is con-
text-dependent, a geometrical model becomes insufficient. 
These issues suggest that concepts should be revised to con-
sider the effect of species on their environment in addition 
to their responses or traits in their environment (Chase and 
Leibold 2003, D’Andrea and Ostling 2016). More strongly, 

conditions may be suitable for a species, or highlight the 
effect of biotic interactions, dispersal limitation, or climate 
availability. For fitness landscapes, they can indicate low-
fitness valleys (Gavrilets 1997). Concepts surrounding holes 
have only recently been developed (Blonder 2016) and is 
unclear yet whether holes are found in empirical hypervol-
umes for any axis combinations or scales.

The value of h(x) can be estimated at a given point in the 
hyperspace (Fig. 1H). For realized niche applications, this is 
the process underlying geographic projection in many cor-
relative species distribution models (Peterson et  al. 2011) 
(Fig. 1I). In this approach, a set of geographic points in 
R2  are transformed into a Euclidean environmental space 
in Rn ,  by using georeferenced layers corresponding to dif-
ferent variables. A hypervolume function h(x) is estimated 
based on the species’ presence and possibly absence in this 
hyperspace. Suitability maps are then obtained by project-
ing discretized geographic pixels within the mapped region 
from R2  into Rn  using the georeferenced layers, and using 
these to calculate values of h(x). These values can then be 
interpreted as suitabilities or presence probabilities depend-
ing on the data used to calibrate the model, acknowledging 
that non-niche factors may further limit the actual distribu-
tion of the species (Guisan and Zimmermann 2000, Godsoe 
2010), and that this probability may be conditioned on 
unmeasured variables due to sampling bias (Soberón and 
Nakamura 2009).

For functional applications, estimates of h(x) in a proba-
bilistic context are also useful for understanding functional 
diversity patterns (Carmona et al. 2016a). Delineating values 
of h(x) across the hyperspace X can be used to estimate met-
rics of functional evenness, dispersion, and redundancy are 
available (Villéger et al. 2008, Mouillot et al. 2014, Ricotta 
et al. 2016).

Mathematical assumptions of hypervolume 
approaches

There is a shared set of fundamental assumptions relevant to 
the definition of a hypervolume that arise from the math-
ematics, regardless of the identity of the axes or the scale of 
the system being considered. These assumptions highlight 
conceptual limitations that are important for determining 
the relevance and applicability of hypervolumes for any 
particular question.

The hypervolume assumes that the n axes defining the 
system are fixed: to compare hypervolumes, each must have 
the same number and identity of axes, for the same reason 
the volume of a square and a cube are not comparable, nor 
are a unit of time and a unit of length. The definition must be 
valid across all the units of interest, e.g. different spatial loca-
tions, different time points, different species. However the 
axes defining one species’ niche may not be a good descrip-
tion for another species, and likewise for the traits used to 
characterize the functional diversity of one community or 
another. While in some cases this problem can be resolved 
by adding more axes, in other cases it may not be possible. 
For example, soil electrical conductivity may be an appropri-
ate trait axis for all species of plants, but inappropriate when 
applied to all species of birds. This problem becomes even 
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The statistical estimation problem

In addition to these conceptual issues, it is also useful to 
explore the practical issues around statistical estimation of 
the hypervolume function, h(x), from data. Suppose that the 
investigator has an m  n matrix of data, corresponding to 
m observations of n variables representing unique axes. These 
data are either implicitly or explicitly associated with a paired 
m  1 vector of biological state values. If all of the observa-
tions are positive (‘present’), then the state vector has one 
class and always takes value 1; if some of the observations are 
positive (‘present’) and others are negative (‘absent’), then 
the state vector has two classes and takes values 1 or 0; if 
the observations are quantitative (e.g. ‘low abundance’, ‘high 
abundance’), then the state vector has multiple or infinite 
classes (Fig. 2).

The statistical problem is then to find a method that can 
estimate h(x) based on the observations and their state vec-
tors. It is often assumed that the sampled data are a ran-
dom sample of a true distribution over the hyperspace X, 
i.e. independent and identically distributed, though this may 
not always be realistic because of sampling bias and cover-
age (Soberón and Nakamura 2009). For geometrical models 
without conceptual interpretations as probability distribu-
tions (e.g. range box models), sampling processes have rarely 
been considered (Junker et al. 2016) and are discussed fur-
ther below.

The properties of the state vector determine the types of 
methods that are available to estimate h(x). If the state vector 
is one-class, then methods must predict presence and absence 
with knowledge only of presences. This can lead to large 
biases in probabilistic models, and/or inadvertent condition-
ing of probability distributions on certain sets of conditions, 
e.g. available environments or species presence (Soberón and 
Nakamura 2009). Alternatively, if the state vector is two-
class or quantitative, then the model must predict values 
of h(x) directly from observed values of h(x). Two-class and 

this perspective suggests that any dynamical questions involv-
ing hypervolumes, e.g. coexistence, invasion, or competition, 
may require more sophisticated models that fundamentally 
cannot be addressed with hypervolumes. For example, the 
growing body of research on demographic models based on 
niches, traits, and species interactions (reviewed by Soberón 
2010, Zurell et al. 2016, Anderson 2017) suggests that such 
extensions will be important.

When hypervolumes are used to quantify functional 
diversity, there are two tacit and often unsupported assump-
tions made. The first assumption is that the measured trait 
axes are proxies for species fitness or niche axes (D’Andrea 
and Ostling 2016, Shipley et al. 2016), a link that remains 
little explored empirically (but see Adler et al. 2013, Kraft 
et al. 2015, Kunstler et al. 2016). While verbal arguments 
can be made that certain traits represent different tradeoffs 
(Westoby and Wright 2006), there is no reason to necessar-
ily assume that the mapping between traits and niche axes 
is linear, or that the dimensionality of the measured trait 
space and the dimensionality of the true niche space are 
equivalent or even comparable. Indeed, recent process-based 
models have shown that fundamental niches often emerge as 
nonlinear functions of several measurable trait and environ-
ment variables (Hoogenboom and Connolly 2009, Porter 
and Kearney 2009). The third assumption is that the mul-
tidimensional distance between trait variables is a proxy for 
niche differentiation and therefore competition. Neither 
of these proxy relationships are necessarily valid. Empirical 
studies have shown that trait differences for commonly mea-
sured functional traits are more likely to be related to fitness 
differences than niche differences (Kraft et  al. 2015, Funk 
and Wolf 2016, Kunstler et al. 2016), and models have dem-
onstrated that lower niche differentiation does not always 
lead to higher competition (Scheffer and van Nes 2006). 
These findings cast doubt onto the robustness of using trait 
axes as proxies for niche axes in phylogenetic and functional 
community ecology.

Figure 2. Comparison of hypervolume estimation methods for one-class (A–F) and two-class (G–J) data. Where models yield one-class or 
two-class (0–1 extremes only) values for h(x), a single red line delineating class membership is drawn; where models yield quantitative 
(continuous) output for h(x) , several values are drawn at different shading levels. Presence data points are shown as closed black circles. For 
two-class methods, absence data are shown as open gray circles. A) Range boxes enclose the data within each axis independently. B) Convex 
hulls find the minimum set of linear inequality constraints that enclose the data. C) Probabilistic ellipses fit a multivariate normal distribu-
tion to the data. D) Dynamic range boxes fit a range box to each quantile of the data. E) Kernel density estimates fit a probability density 
function to the data. F) Support-vector machines find a high-dimensional classifier for the data. G) Generalized linear models fit a linear 
regression surface to the data. H) Generalized additive models use a set of splines to fit a nonlinear regression surface to the data. I) Random 
forests simultaneously use multiple regression trees to vote on the data. J) Boosted regression trees iteratively improve the performance of 
regression trees by fitting new trees to the model residuals.
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that do not include interactions between variables (e.g. range 
boxes) are capable of working with incomplete cases. This is 
typically less of a concern with realized niche data that are 
obtained from complete GIS layers, but is potentially rel-
evant to functional traits that are obtained from databases 
with sparse coverage.

There are sample size challenges that come from trying 
to estimate a hypervolume from empirical data. The estima-
tion problem easiest is for methods that allow description of 
relevant statistics (e.g. size, overlap) without directly delin-
eating a geometrical shape (Junker et  al. 2016). It is also 
simple for methods that do delineate a geometrical shape 
but assume additionally that the data has a certain shape or 
are drawn from a certain distribution. For example, estima-
tion is also simple when it is assumed that data are drawn 
from a multivariate normal distribution and have no holes 
(Qiao et al. 2017), or that there are no or few interactions 
between hypervolume axes, e.g. range boxes or generalized 
linear models (Busby 1991, Leathwick et al. 2006). In these 
cases, it becomes possible to work with low sample sizes, but 
at the tradeoff that the resulting hypervolumes may reflect 
more about the modeling approach than the data.

In methods that allow for more flexible delineation of 
shapes, much larger samples are required. As dimensionality 
increases, the number of possible shapes grows very rapidly, 
and so do the data required to constrain them (Blonder et al. 
2014, 2017). When sufficient data are not available, options 
include making a stronger set of assumptions and using a 
simpler method, reducing the dimensionality of the analysis, 
or obtaining more data. In general, data with high dimen-
sionality but low numbers of observations (e.g. gene expres-
sion data) will not be able to apply hypervolume concepts 
and should be handled with other approaches, while data 
with lower dimensionality and many observations may be 
able to use hypervolume concepts.

Some methods are invariant to certain data transforma-
tions. If such transformations represent uncontrollable or 
unwanted effects, then invariance is useful; alternatively 
if such transformations represent differences in biological 
interpretation, then invariance is not useful. Some methods 
(e.g. dynamic range box, support vector machine) are invari-
ant to linear shift and scale transformations, because data are 
rescaled to a unit interval before analysis. Some (e.g. kernel 
density estimation, support vector machine, PCA, Bayesian 
ellipse, etc.) are invariant to rotational transformation (i.e. 
correlations between axes, or equivalently choice of differ-
ent coordination systems). Some of the methods, such as 
random forests and range bagging, are invariant to general 
monotone transformations, e.g. logarithmic transformation. 
However for most other algorithms, such transforms can 
yield different hypervolumes after back-transformation. For 
example, convex hulls and kernel density estimates are not 
necessarily preserved by data transformation.

Most extant methods can use sampled data to calculate 
specific statistics of interest, but do not provide information 
on the accuracy of these estimates. Accomplishing the latter 
goal would not only require the formulation of a feasible 
statistical and probabilistic model, but also careful thought 
about whether the sampled data actually mimic the under-
lying population values in an unbiased, representative, and 
from a sampling point of view, probabilistically quantifiable 

quantitative methods tend to be more accurate, because they 
are given more complete input data. However two-class and 
quantitative data is not readily obtainable in all contexts: 
for example, in measurements of functional diversity, it is 
unclear which trait values should be considered truly absent 
from a community when the trait values measured to be pres-
ent are surely only a limited sample of a true distribution. 
Additionally, two-class methods focused on discriminating 
classes rather than estimating boundaries may suffer from 
biases in niche modeling due to the structure of absence data 
(Drake and Beier 2014, Maher et al. 2014).

Historically, functional hypervolumes have been estimated 
with one-class methods, while realized niches have been esti-
mated with one-class, two-class, and quantitative methods. 
Recognizing the common underlying statistical problem may 
be useful for synthesizing or transferring hypervolume esti-
mation methods across disciplines. For example, one solu-
tion that has been used for realized niche data but not trait 
data is to simulate absence data by drawing at random from a 
background distribution, e.g. all the available environmental 
conditions. A similar approach could potentially be used for 
trait data in order to use two-class and quantitative methods 
where one-class methods have previously been used.

Choosing an appropriate statistical method depends on 
the goals of the investigator and the limits of the available 
data. A comparison of leading methods is provided in the 
Supplementary material Appendix 1 Text A1, Table A1. 
Detailed information on currently available software pack-
ages is provided in Supplementary material Appendix 1 
Table A2. To assist with choice of method for hypervolume 
estimation, Supplementary material Appendix 1 Fig. A1 also 
provides a decision support flowchart.

The structure of the available data will restrict the choice 
of method. The most critical question is whether there is suf-
ficient data available to estimate a geometrical shape in the 
proposed dimensionality space. If not, none of the hypervol-
ume methods should be used. If there is, then the investiga-
tor must choose to use either two-class or one-class methods 
depending on the structure of the data. Then the investigator 
should identify any additional assumptions about the struc-
ture of the data. For example, if it is assumed that the data 
represent a fundamental niche defined by simple indepen-
dent limits on each axis, then fitting a range box model may 
be appropriate; alternatively if it is assumed that the data rep-
resent a realized functional space with complex shape, then 
fitting a kernel density estimate may be appropriate. This 
choice is beyond determination by any quantitative statisti-
cal comparison and must be determined by the investigator.

Data properties may further guide the investigator’s 
method choice. Some methods are robust to outlying points, 
while others are not. If such outlying points should be given 
high leverage (e.g. real and extreme observations of a spe-
cies’ realized niche that indicate physiological tolerances) 
then methods that are not robust to outliers should be used; 
alternatively, if outlying points indicate measurement error 
(e.g. measurements of body size that are unrealistically high 
but recorded in a dataset), then methods that are robust to 
outliers should be used instead. Additionally, the occur-
rence of data with missing values can also guide choices. 
Most methods require complete data cases in order to locate 
points in the n-dimensional space. However some methods 
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and estimation methods has highlighted several limitations 
and possible synthesis areas that could be readily addressed 
through further research (Table 2).

Hutchinson (1957) originally noted that the hypervol-
ume ‘will exist whatever the shape of its sides’ and discussed 
only a small number of the issues explored here. Carefully 
assessing these geometrical considerations will be critical in 
determining whether hypervolumes are a useful description 
for a given system of interest. It may be that the hypervolume 
concept should not be used in some research areas because of 
data or conceptual limitations – for example, in cases where 
Euclidean volumes and distances are not well defined or 
comparable, where data dimensionality is too high relative 
to the number of data points, or where multidimensional 
overlap metrics do not adequately capture the underlying 
processes in a system (Holt 1987).

Additionally, there are useful parallels between the uses 
of hypervolumes in modeling niches, functional diversity, 
fitness landscapes, and morphospaces. Understanding these 
commonalities and shared intellectual heritage can be use-
ful for synthesizing ideas and methods. However in some 
cases these parallels have been incorrectly considered as 
equivalences. This issue is especially prevalent when using 
functional trait hypervolumes for understanding niche-
based processes, when little is known about how traits and 
niches are actually related. In general, this suggests a need 
for more careful thinking about the implications of using 
hypervolumes and accepting their assumptions for any 
given analysis.

The methods described in Supplementary material 
Appendix 1 Table A1 have not all been compared with each 
other on real or simulated data, so their relative performance 
remains unknown (but see Elith et  al. 2006, Qiao et  al. 
2015 for some methods). Indeed, most studies, especially 
in functional diversity applications, have tended to choose 
a single method without exploring its statistical properties 
or considering alternatives. There are at present no software 
packages available to permit statistical comparison of all 
these methods, especially most of the one-class methods, 
although some tools exist for a restricted set of methods 
(Thuiller et al. 2009, Naimi and Araújo 2016). In general 
it is unknown which types of questions and data are best 
suited for each modeling approach, resulting in extensive 
ongoing discussion (Blonder et al. 2016, 2017, Carmona 
et al. 2016b, Qiao et al. 2017). More interaction between 
different research communities that rely on hypervolume 
concepts would be fruitful.

manner. This would help to avoid the danger of mistaking 
estimates calculated from sampled values as ‘true’ measures 
of size, overlap, etc. By assuming a sampling model (e.g. 
independent and identically distributed), it is possible to 
compare performance among hypervolume methods using 
a range of statistical approaches. These approaches either 
describe the quality of the model fit to the input data, or 
describe the predictive ability of the method on a subset of 
the input data, via cross-validation, or on new test data.

For some types of models it is possible to estimate a like-
lihood function, then use a maximum likelihood estimate 
(MLE) to find a best set of model parameters. Likelihood 
functions can also be compared to select among model-
ing approaches, potentially with a penalty term for model 
complexity (e.g. via Akaike information criterion). However 
this approach is based entirely on a fit to the input data and 
does not necessarily provide guidance on predictive ability. 
Additionally, some of the surveyed modeling approaches 
do not lend themselves to maximum likelihood analysis, 
e.g. range boxes, kernel density estimates, support vector 
machines, or convex hulls. Some of these models have no 
parameters, so a likelihood cannot be defined. In other cases, 
the MLE is not helpful. For example a kernel density esti-
mate has one parameter – a bandwidth, which controls the 
padding around each data point. The MLE will always select 
a bandwidth of zero (Shalizi 2011) in order to yield a model 
most consistent with the data, but this provides no utility for 
predicting values of h for new data.

Cross-validation approaches provide more insight into 
model fit and predictive ability (Caruana and Niculescu-
Mizil 2006). In these approaches the model is used to predict 
class membership for a new test dataset, with results sum-
marized into a confusion matrix (number of true and false 
positives and negative predictions) or a divergence metric, 
e.g. relative entropy (Shalizi 2011). Several of these matrices 
can be constructed as model parameters are varied and trans-
formed into a receiver-operator characteristic (ROC) curve. 
This confusion matrix can be used then to construct Type 
I/II error rates, sensitivities, specificities, and other metrics 
of performance. Importantly, the cross-validation can occur 
either on different folds of data resampled from the calibra-
tion or on wholly novel test data (Bahn and McGill 2013). 
It is also possible to use these cross-validation approaches to 
compare other summary statistics of hypervolumes, e.g. vol-
ume and overlap, to an a-priori expectation (Blonder 2016). 
For some methods, model performance has been assessed via 
these approaches using simulated input data with known 
statistical properties (Qiao et  al. 2016). Among two-class 
methods, generalized linear model and boosted regression 
tree approaches tend to have better performance on simple 
datasets, while among one-class methods, convex hull and 
range box methods tend to have better performance on 
simple datasets, while kernel density estimates have better 
performance on complex datasets (Qiao et al. 2017).

Challenges and opportunities

The range of research topics across hypervolume scales 
and axis types and still remain largely unresolved in gen-
eral cases (Table 1). Moreover, this discussion of concepts 

Table 2. Priority questions for hypervolume research.

• How do hypervolumes change through time in response to 
different factors at different scales?

• What biological processes can be inferred from hypervolume 
geometry?

• How can mechanistic models predict hypervolume boundaries 
at different biological scales and axis types?

• What shapes and dimensionalities do hypervolumes have for 
different applications?

• When are static hypervolume concepts insufficient to address 
biological questions?

• Which descriptive and inferential methods are best for estimating 
hypervolumes?
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and questions present for methods development. Notably, 
there appears to be extensive room for sharing concepts 
across models traditionally used for niche modeling and 
those used for functional diversity modeling. For example, 
the models used for species distributions have a robust 
set of evaluation metrics developed but limited tools for 
summarizing the shape and overlap of the underlying 
hypervolume, while the converse is true of models used for 
functional diversity.

There is a now vibrant and active discussion of concep-
tual and methodological issues surrounding n-dimensional 
hypervolumes. This discussion has extended far beyond 
Hutchinson’s original applications for niches to a range of 
other research areas, underscoring the potential importance 
of this geometrical concept across ecology and evolutionary 
biology. Determining when and where hypervolumes are 
useful will be useful in producing more conceptually sound 
science.
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