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Abstract
1.	 Hutchinson’s n-dimensional hypervolume concept underlies many applications in 
contemporary ecology and evolutionary biology. Estimating hypervolumes from 
sampled data has been an ongoing challenge due to conceptual and computational 
issues.

2.	 We present new algorithms for delineating the boundaries and probability density 
within n-dimensional hypervolumes. The methods produce smooth boundaries that 
can fit data either more loosely (Gaussian kernel density estimation) or more tightly 
(one-classification via support vector machine). Further, the algorithms can accept 
abundance-weighted data, and the resulting hypervolumes can be given a probabil-
istic interpretation and projected into geographic space.

3.	 We demonstrate the properties of these methods on a large dataset that character-
ises the functional traits and geographic distribution of thousands of plants. The 
methods are available in version ≥2.0.7 of the hypervolume r package.

4.	 These new algorithms provide: (i) a more robust approach for delineating the shape 
and density of n-dimensional hypervolumes; (ii) more efficient performance on 
large and high-dimensional datasets; and (iii) improved measures of functional  
diversity and environmental niche breadth.
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1  | INTRODUCTION

Over the past decade, numerous studies have used the n-
dimensional hypervolume as a central concept for describing the 
functional diversity of communities (Barros, Thuiller, Georges, 
Boulangeat, & Münkemüller, 2016; Cornwell, Schwilk, & Ackerly, 
2006; Díaz et al., 2016; Lamanna et al., 2014; Swenson & Weiser, 
2014) and the niches of species and broader clades (Broennimann 
et al., 2007; Peterson, Soberon, & Pear, 2011; Soberón & Nakamura, 
2009; Swanson et al., 2015; Tingley, Vallinoto, Sequeira, & Kearney, 

2014). Originally proposed by Hutchinson (1957), this concept as-
sumes that a system can be characterised by a set of independent 
axes, e.g. functional traits, resource requirements, or abiotic tol-
erances. These axes constitute an n-dimensional Euclidean space. 
A geometrical shape can then be delineated within this space and 
used to describe the size, position and geometry of the system. The 
shape may also be described as a probability distribution over these 
axes, with level sets corresponding to a range of possible geome-
tries (Blonder, Lamanna, Violle, & Enquist, 2014; Carmona, de Bello, 
Mason, & Lepš, 2016a).
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Despite the intuitive nature of the concept, determining how to 
delineate the shape of a hypervolume for a given dataset has proven 
to be difficult and controversial. First, there are multiple methods 
available to estimate a hypervolume, each with different underlying 
assumptions. For example, functional diversity has been estimated 
with dynamic range boxes (Junker, Kuppler, Bathke, Schreyer, & 
Trutschnig, 2016), convex hulls (Villéger, Mason, & Mouillot, 2008), or 
multidimensional ellipses (Swanson et al., 2015). Second, niches can 
also be estimated with approaches such as generalised linear models, 
generalised additive models and range boxes (e.g. BIOCLIM) that also 
can be interpreted geometrically, especially in the case of presence-
only data (Elith et al., 2006; Peterson et al., 2011). While there has 
been some comparisons of methods for both niche (Bahn & McGill, 
2013; Blonder et al., 2014; Elith et al., 2006; Qiao, Escobar, Saupe, Ji, 
& Soberón, 2017) and trait data (Mason & de Bello, 2013; Schleuter, 
Daufresne, Massol, & Argillier, 2010), the methods used for trait data 
are rarely applied to niche data, or vice-versa. As a result, there is not 
necessarily a clear “best” way to delineate hypervolumes (Blonder, in 
review; Merow et al., 2014).

The choice of an appropriate method depends on the goals of the 
analysis and is further complicated by data limitations. For example, 
in the context of niche modelling, it has been argued that fundamen-
tal niches should have simple geometries (Blonder, Lamanna, Violle, & 
Enquist, 2017; Qiao et al., 2017). However, species interactions, dis-
persal, and variation in environmental space availability can result in 
realized niches with more complex shapes (Jackson & Overpeck, 2000; 
Soberón & Nakamura, 2009). Moreover, incomplete or biased sam-
pling could yield falsely complex shapes for both niches and functional 
diversity applications. As a result, for some modelling applications 
and sampling regimes, complex shapes may not be preferred. In these 
cases, methods already exist to fit simple distributions and shapes to 
data (e.g. convex hulls, ellipses (Mouillot et al., 2014; Swanson et al., 
2015)). However, there are fewer solutions for when more complex 
shapes are desired.

Here, we present a Monte Carlo approach to delineating hy-
pervolumes that builds on the random sampling method of Blonder 
et al. (2014). The approach can describe complex shapes in high 
dimensionalities, measure the volume of these shapes, perform set 
operations on multiple shapes (e.g. intersections, similarity indices), 
predict suitability maps by projecting from hyperspace onto geo-
graphic space, and detect the presence of holes (Blonder, 2016a). 
The original Blonder et al. (2014) method has been the subject of 
much discussion in the literature. On the one hand, the method has 
become widely used for both functional diversity and realized niche 
modelling applications (e.g. Barros et al., 2016; Carvajal-Endara, 
Hendry, Emery, & Davies, 2017; Díaz et al., 2016; Lamanna et al., 
2014; Loranger et al., 2016). On the other hand, there has also been 
debate concerning the edge delineation and probabilistic assump-
tions of the original algorithms (Blonder, 2016b; Carmona et al., 
2016a; Carmona, de Bello, Mason, & Lepš, 2016b) and whether the 
method is useful for fundamental niche modelling where complex 
geometrical features may not be expected (Blonder et al., 2017; 
Qiao et al., 2017).

Here, we further develop hypervolume concepts and address 
current limitations. To do so requires addressing two general math-
ematical problems shared by all hypervolume delineation approaches 
(Blonder, in review). The first is to build a hypervolume function h(x) 
based on input data that maps an n-dimensional vector within a 
Euclidean space X to a scalar (presence vs. absence, or probability of 
occurrence). Example functions include a generalised linear model or 
a convex hull. The second problem is how to best evaluate h(x) over 
X to delineate the subset of points at which h(x) is above a certain 
value. This thresholding step is useful for delineating contour-based 
boundaries, and thus for enabling geometric interpretations of the hy-
pervolume function.

In general, the hypervolume function h(x) may not have a para-
metric description, so the n-dimensional shape must be delineated 
by numerically evaluating the function. This evaluation is a signifi-
cant computational challenge, because a naïve boundary delinea-
tion algorithm would need to evaluate h(x) at all points in the space, 
which is inefficient when X is a high-dimensional space. In order 
to avoid this inefficiency, algorithms must deal with the trade-off  
between ignoring irrelevant regions of the n-dimensional space, while 
still sampling it sufficiently to delineate the shape accurately.

In Blonder et al. (2014), we initially addressed the problem of de-
fining h(x) using kernel density estimation (KDE). This method places a 
probability kernel function around each input data point to yield some 
amount of padding (a “bandwidth”), corresponding to unsampled but 
potentially sampleable regions of the space. The resulting kernel func-
tions are added together across all the data points and normalised. 
This process yields an h(x) with high values close to the input data 
points and lower values far away from the input data points. In our 
original publication, we proposed using a multivariate uniform hyper-
box kernel function, i.e. one with a constant probability density over a 
finite range, specified by the bandwidth.

We then addressed the problem of evaluating h(x) and defining 
the hypervolume using a sampling approach that delineates a uni-
formly random set of points within the hyperspace with known val-
ues of h(x), all guaranteed to be within the hypervolume. This random 
sampling approach supports methods for approximating the geome-
try of h(x). Because the random points are uniformly distributed, and 
have a known density, it is possible to calculate the volume of the 
shape by dividing the number of random points by the point density. 
Additionally, it is possible to obtain contour boundaries by removing all 
random points below a certain threshold value of h(x). Approximate set 
operations (e.g. overlap measures) can be performed by determining 
when random points are sufficiently close to other random points to 
be considered part of the same shape. These operations can be carried 
out without needing to know the underlying analytical form of h(x), 
enabling complex operations to be carried out on hypervolumes inde-
pendent of the function(s) that generated them.

While the original hyperbox approach of Blonder et al. (2014) has 
proven to be useful, it has a number of limitations. Because the hyperbox 
kernel is flat, the probabilities do not decay smoothly towards zero at the 
boundaries of the shape. This leads to jagged “squared-off” hypervol-
ume boundaries with step changes in probability density. Moreover, the 
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original algorithm did not weight input data. As a result, the approach is 
only semi-probabilistic (Blonder, 2016b; Carmona et al., 2016a,b) and the 
resulting hypervolume cannot be thresholded at an arbitrary quantile.

Here, we describe two new algorithms for delineating and evalu-
ating the hypervolume function h(x), implemented in the hypervolume 
r package, versions ≥2.0.7. The new algorithms can weight input data 
and produce boundaries that are smoother and conform more closely 
to the input data. Furthermore, one of the new algorithms can pro-
duce continuously varying probability densities that decay smoothly 
towards the boundary of the hypervolume and can be thresholded at 
any desired quantile. We also highlight additional new functions in the 
package relevant to species distribution modelling and functional di-
versity analysis. We then illustrate and compare the performance and 
results of these new methods using data on plant functional traits and 
environmental tolerances. Code illustrating usage for all new functions 
is available within the r package help. Scripts to replicate the demon-
stration analyses are provided as online supporting information.

2  | NEW HYPERVOLUME 
CONSTRUCTION METHODS

We first present two new hypervolume construction methods. The 
first is a Gaussian kernel density estimation method that can be ac-
cessed via the hypervolume_gaussian function. Unlike the uni-
form, flat hyperbox kernel, the Gaussian kernel decays towards zero 
continuously in all directions. The second is a one-class support vec-
tor machine (SVM) estimation method that can be accessed via the 
hypervolume_svm function. A SVM provides a smooth fit around 
data that is insensitive to outliers, yields a boundary that classifies 
points as either “in” or “out” of the hypervolume, and is computation-
ally viable in high-dimensional hyperspaces (Drake, Randin, & Guisan, 
2006; Schölkopf, Williamson, Smola, Shawe-Taylor, & Platt, 1999). 
Properties of these algorithms are illustrated in Box 1.

The two new methods are strictly better than those we originally 
proposed and should replace the old hyperbox kernel method in all sit-
uations. If the investigator wants continuous probabilistic output, and 
believes the data are an unbiased sample from a probability distribu-
tion (i.e. they seek a “loose wrap” to the data), then the Gaussian KDE 
method should be used. This method is probably most appropriate for 
most functional diversity applications and for fundamental niche mod-
elling applications where the properties of the distribution underlying 
the observed data are of interest. Alternatively, if the investigator be-
lieves that the extreme values in the sampled data represent the true 
boundaries of the data (i.e. they want a “tight wrap” to the data) and 
wants a sharp binary classification boundary, then the SVM method 
should be used, with parameters chosen to achieve the desired tight-
ness of the fit to the data. This is probably most appropriate for most 
realized niche modelling applications where the limits of the observed 
data are of most interest. The SVM approach is also more appropriate 
in very high dimensionality analyses, because KDEs become under-
constrained by data as dimensionality increases: there are too many 

possible probability density functions that would be consistent with 
the observed data (Scott, 2015; Scott & Wand, 1991). As previously 
noted (Blonder, 2016a), we suggest that a KDE analysis conducted 
with m input data points should be conducted in at most n = log m 
dimensions).

However, ultimately the choice of which method to use depends 
on the investigator’s beliefs about the true structure of the data, which 
is fundamentally unknowable from any sample (Soberón & Nakamura, 
2009). As with any tool, the quality of results depends on the investi-
gator choosing when to use it appropriately.

We also have wrapped these new methods (and the original hyper-
box method) within a generic hypervolume function that enables the 
investigator to specify the algorithm to be used (hyperbox kernel den-
sity estimation, Gaussian kernel density estimation, SVM). The func-
tions provides default values for all parameters that should provide 
reasonable performance for datasets of ~2–8 dimensions and up to 
10,000 data points. Parameters can be changed (as detailed below) to 
also provide good performance in more challenging cases.

Regardless of the algorithm selected, the hypervolume functions 
all share similar data requirements. They are meant to be used on 
datasets with continuous, orthogonal axes, and it is helpful for inter-
pretation of distances and volumes if axes have standardised units. 
Categorical data can potentially be ordinated with Gower transforma-
tion (Blonder, in review). Data ordination techniques (such as princi-
pal components analysis) can be used to improve axis orthogonality, 
and rescaling transformations (such as z-transforming) can help stan-
dardise distances (Blonder, in review; Carmona et al., 2016a). The 
generic hypervolume function also generates warnings for several 
of these data-related issues (e.g. highly correlated axes, insufficient 
number of data points, scale mismatches between axes, etc.) that we 
have previously highlighted (Blonder et al., 2014).

2.1 | Hyperelliptical uniform sampling

In order to define the set of possible points in X used to evaluate h(x) 
for both KDE and SVM methods, we use a hyperelliptical sampling al-
gorithm. Elliptical sampling leverages the fact that points that fall in-
side the hypervolume are close to the data (Box 1a,f). Thus, for some 
definition of “close,” it is possible to sample only points that are “close” 
to the data and still obtain an accurate estimate of h(x). This creates a 
trade-off: if the samples do not extend far enough away from the data, 
then portions of the hypervolume will be missed by the sampling pro-
cedure. On the other hand, sampling too far from the data is a waste of 
resources, since any such samples will fall outside of the hypervolume 
and be discarded without providing any useful information. Enclosing 
data within a fixed radius is also useful because hyperellipses are level 
sets of Gaussian functions, which are used for both the Gaussian KDE 
and SVM methods (see below). As such, sampling points within a hy-
perelliptical region guarantees that all of the subregions of X with val-
ues of h(x) above a certain threshold are sampled.

We therefore developed an algorithm for generating a uniformly 
random set of points from the union of the hyperellipses enclosing a 
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set of datapoints. We first sample uniformly random points from the 
unit hyperball, shifting and scaling to yield the location and covari-
ance matrix of the desired hyperellipse. This procedure yields a set 
of points that are denser in regions of X that are covered by more 
than one hyperellipse (Box 1b,g). To reduce these random points 
to uniform density, we discard oversampled points in proportion to 
their density (using a recursive partitioning tree data structure to ef-
ficiently count the number of times each point is over-represented) 
(Bentley, 1975). The outcome of this process is the desired set of 
random points (Box 1c,h), uniformly distributed over a hypervolume 
that can be calculated as the volume of a single hyperellipse (deter-
mined analytically with standard formulas) multiplied by the number 
of input data points and by the mean inverse over-representation 
count.

2.2 | Delineating hypervolumes with a one-class 
support vector machine

We define a value of h(x) using a one-classification machine learn-
ing method for estimating the support of a probability distribution 
(Schölkopf, Platt, Shawe-Taylor, Smola, & Williamson, 2001) with the 
svm function from the e1071 r package (Meyer et al., 2012), which 
provides an interface to the libsvm c++ package (Chang & Lin, 2011). 
The SVM method uses positive observations of data (i.e. only one 
class of data) to identify regions of the hyperspace that should also 
be positively classified, yielding binary predictions (in vs. out, 1 vs. 0). 
We implemented the SVM with a radial basis function (RBF) kernel. 
Briefly, this means that h(x) is defined as a weighted sum of RBFs (each 
proportional to a multivariate Gaussian function) centred on the data 

Box 1 Demonstration of the hyperellipse random sampling method for delineating hypervolume boundaries for an input 
dataset (purple points) (compare to Box 1 in (Blonder et al., 2014) for hyperbox hypervolumes).

(a) In a one-class support vector machine model, a subset of points are identified as support vectors (black points). (b) Uniformly random 
points are drawn from hyperellipses surrounding each support vector. (c) These points are resampled down to uniform density. (d) The sup-
port vector machine model is evaluated at each random point. (e) Positively classified points are retained to characterise the hypervolume.
(f) In a Gaussian kernel density estimate, all points contribute to the overall probability density. (g) Uniformly random points are drawn from 
hyperellipses surrounding each point. (h) These points are resampled to uniform density. (i) The kernel density estimate is calculated at each 
random point. (j) Points with values above a threshold enclosing a certain quantile of the probability or volume are retained to characterise 
the hypervolume.
(k) Using a function to construct a hypervolume from an arbitrary function (here, a random forest regression model), all points contribute to 
the overall estimate; here two-class input data are used (black, negatively classified points). (l) Uniformly random points are sampled from a 
hyperbox region. (m) The model is evaluated at each random point. (n) Points with values above a threshold are retained to characterise the 
hypervolume.
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points. The weights in this weighted sum (denoted lowercase ci) are 
selected by an optimisation procedure that sets most weights to zero; 
the nonzero values are called “support vectors.” The same procedure 
automatically selects a threshold value (denoted ρ): only the regions 
where h(x) exceeds this threshold are included in the hypervolume. 
The width of the RBF function is proportional to a user-selected tun-
ing parameter, γ (svm.gamma), and the optimisation procedure is 
controlled by a second tuning parameter, ν, (svm.nu). The value of 
ν determines the upper and lower bound on the fraction of misclas-
sification errors, and it is bounded between 0 and 1. Lower values of ν 
yield lower in-sample prediction errors but potentially higher out-of-
sample prediction errors, i.e. overfitting.

To efficiently sample points that do not have zero values of h(x), we 
generate a hyperelliptical uniform sample of points that are close to the 
subset of data points that were identified as support vectors (i.e. the 
points that contribute to delineating the boundary of h(x)): Box 1a,e. We 
define “close” by analytically solving for the maximum distance, d, away 
from a support vector that would still yield positive classification, as-
suming that all support vectors were in co-located (the case that would 
require the largest hyper-ellipse). This assumption yields a constraint 
equation that can be solved for d: e−γd2

∑

i
ci−ρ = 0. This distance d is 

then scaled by the standard deviation of the data along each axis and 
used to determine the breadth of the sampled hyperellipses.

2.3 | Delineating hypervolumes with a Gaussian 
kernel density estimate

We define a value of h(x) as a mixture density, i.e. a sum of multivariate 
normal distributions with means centred at each data point and with 
diagonal covariance matrix scaled by the squared kernel bandwidth 
vector (Box 1i). Values of the bandwidth vector (kde.bandwidth) 
can either be chosen automatically using the estimate_bandwidth 
function, or specified by the investigator. As described previously 
(Blonder, 2016b), this function allows calculation of a Silverman band-
width estimator (the default; optimal for axis-wise optimisation of 
normally distributed data), a plug-in estimator (Wand & Jones, 1994) 
and a cross-validation estimator (Duong & Hazelton, 2005). The first 
algorithm is computationally fast while the latter two algorithms are 
slower but have lower predictive error rates.

The Gaussian kernel density estimate in principle is non-zero  
everywhere in the hyperspace. To produce bounded output, we gener-
ate a set of uniformly random points using the hyperelliptical uniform 
sampling algorithm described above (Box 1f,h). The edge of this sample, 
i.e. the “closeness” of random points to the data, is determined by mul-
tiplying the bandwidth vector by a fixed number, sd.count. That is, 
the hyperellipses each enclose a region bounded by a certain number of 
standard deviations from the mulitivariate normal distribution centres. 
As sd.count becomes increasingly large, the probability density esti-
mate becomes increasingly accurate. This initial boundary choice sets 
a maximum possible volume for the hypervolume and is necessary to 
ensure that the output does not have an infinite size. We next evalu-
ate h(x) at each of these random points (Box 1i). We then finally retain 
points only with values of h(x) above a certain threshold (Box 1j). The 

volume of the hypervolume is then the ratio of the number of retained 
random points to the number of random points that were tested. The 
default threshold encloses 95% of the probability density of the kernel 
density (via the biased estimate over X). However, it is also possible 
to choose a threshold that encloses a different quantile (quantile.
requested) of either the probability density or of the total enclosed 
volume (quantile.requested.type). The thresholding approach is 
fully described in the next section. Note that to generate smaller hyper-
volumes with less padding around the data, it is not recommended to 
decrease sd.count. While varying this parameter appears to vary the 
amount of “padding” around each data point, it does so only by trun-
cating the estimate of the probability density and increasing bias in the 
overall result. Rather, the investigator should decrease kde.bandwidth 
to manipulate the level of padding around the input data. The value 
of sd.count should generally not be modified, and should never be 
decreased from its default value of 3. This reduces bias in hypervolume 
estimates but has higher computational costs due to the larger number 
of evaluations of h(x).

2.4 | Parameter choice

All of the hypervolume construction methods also depend on a compu-
tational parameter: for hypervolume_box, hypervolume_gaussian, 
and hypervolume_svm, the parameter is called samples.per.point. 
For hypervolume_general_model and expectation_convex, it 
is called num.samples. This parameter determines the number of 
uniform random points used to represent values of h(x). The default 
value of this parameter is chosen via a heuristic approach to increase 
with the square root of the dimensionality of the analysis, in order to 
provide more robust estimates of higher-dimensional shapes that may 
have complex forms. For the first three functions the value is chosen 
on a per-point basis, so that hypervolumes with different number of 
data points have the same overall sampling effort; the latter two func-
tions can be run without specifying a dataset, so no such normalisa-
tion is performed. The investigator can further increase this parameter 
if desired. Larger values of this parameter produce more robust results 
at higher computational cost.

2.4.1 | Quantile thresholds

To allow a more fully probabilistic description of hypervolumes, we 
also implement a general method (hypervolume_threshold) to 
choose one or more thresholds to delineate boundaries of a hyper-
volume with a given probability distribution. Many non-probabilistic 
functions can be given a probabilistic interpretation: Any h(x) that has a 
bounded integral can be normalised by this value and then treated as a 
probability density function. For example, a SVM-based hypervolume 
can be reconsidered as a uniform probability density over its extent.

The thresholding method generates a large range of uniformly 
spaced possible threshold values varying from the minimum to the 
maximum value in the hypervolume, then retains points with h(x) ex-
ceeding this threshold. At each threshold, the algorithm then calcu-
lates both the volume enclosed (proportional to the number of random 
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points) as well as the total probability density enclosed (proportional to 
the sum of the values of the random points). These values can be used 
to estimate an empirical cumulative distribution function and thus 
quantiles of the volume or probability density. The algorithm can then 
return either all of these nested hypervolumes, or a single hypervol-
ume corresponding to a desired quantile value of the desired type (e.g. 
95% of the total enclosed volume relative to the initial hypervolume) 
(Box 2). The nested hypervolumes can either be returned with their 
values intact, or “flattened” to uniform probability values throughout, 
i.e. as representing geometrical shapes. If the exact quantile value re-
quested cannot be obtained, the next closest value is used instead.

The choice of threshold can be determined in several ways depend-
ing on the goal of analysis. For SVMs, there is only one possible thresh-
old value, so no choice need be made. For KDEs, using a fixed algorithm 
for threshold choice (e.g. 95% quantile) is appropriate in most cases. 
In some applications (e.g. species distribution modelling), the thresh-
old can instead be chosen to maximise some classification statistic, e.g. 
sensitivity or specificity. In other cases, the threshold can be varied to 
determine how the outcome of the analysis of interest (e.g. volume, 
overlap) changes. Analysing results as a function of multiple threshold 
values therefore provides a key approach to use the full probabilistic 
structure of the hypervolume. For example, holes in a hypervolume 
may be absent at low thresholds, but appear at higher thresholds where 
valleys in probability distributions become apparent (Blonder, 2016a).

3  | OTHER NEW FUNCTIONALITY

Since its initial publication, we have also implemented a range of other 
features and minor improvements in the r package.

First, we introduce a function, hypervolume_general_model, 
that allows estimation of hypervolumes for any arbitrary function h(x). 

This new function can effectively map data from an n-dimensional 
Euclidean space into a one-dimensional Euclidean space with non-
negative values. This approach may be useful for treating the outputs 
of, e.g. generalised linear models, generalised additive models, or ran-
dom forests, as hypervolume functions. The investigator specifies a 
model object for which the generic predict R function can be called, 
as well as a range.box parameter, defining a set of minimum and 
maximum values along each hypervolume axis, and a min.value pa-
rameter. The function then samples a set of uniform random points 
from the hyperbox defined by these values, and evaluates the model 
object at each point, delineating values of h(x). The function then re-
tains only points where values of h(x) exceed min.value, and calcu-
lates the resulting volume as the fraction of retained points multiplied 
by the volume of the hyperbox. For models with binary output, setting 
min.value to zero is sufficient to delineate the hypervolume boundar-
ies. For models with continuous output, the resulting hypervolume can 
be further thresholded at different quantile values, as described below.

The hypervolume_general_model function provides a flexible 
approach to identifying the shape of arbitrary functions using hyper-
volume concepts. It does have high computational cost in high dimen-
sions, because the hyperbox sampling evaluates the entire Euclidean 
space, without the efficiency gains of the hyperellipse sampling used 
for the kernel density estimate and SVM models. The hyperbox ap-
proach requires the investigator to specify the region over which the 
model will be evaluated. This may lead to clipping of hypervolume 
boundaries but is also useful in constraining output from models that 
do not predict h(x) = 0 at x = ±∞, e.g. some linear and generalised linear 
models.

The hypervolume package already includes an expectation_
convex function that provides an approach for defining h(x) as the 
minimum convex polytope enclosing the data points. In the new 
package version, this function’s performance has been dramatically 

Box 2 Demonstration of the quantile thresholding algorithm

(A) Hypervolume boundaries can be delineated at a range of threshold values corresponding to different values of the underlying estimation 
function (colored regions). (B) Each of these regions encloses a different quantile fraction of the total volume or probability density. Thus, the 
investigator can specify a desired quantile fraction and the algorithm can then determine the appropriate threshold to use.

(a) (b)
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improved by the use of an adaptive hit-and-run sampling algorithm 
detailed in (Tervonen, van Valkenhoef, Baştürk, & Postmus, 2013).

We also include an approach to allow for weighting of data and 
variation/uncertainty within data. This approach can be used for ex-
ample to account for abundance of species and/or intraspecific trait 
variation in community-level functional diversity analyses (Enquist 
et al., 2015). The weight_data function can be applied before run-
ning any of the hypervolume algorithms. Data point importance can 
be varied by duplicating each point a certain number of times before 
analysis, effectively adding copies of each observation into the data. 
Uncertainty and/or variation around each observation can also be in-
corporated within this function by replacing observations by a sample 
from a Gaussian distribution with a chosen standard deviation.

We provide a function hypervolume_estimate_proba-
bility that can generate geographic maps for species distribution 
modeling (e.g. Figure 6). This function equates suitability scores to 
estimated hypervolume function values at each point in hyperspace 
(Peterson et al., 2011). It estimates the probability density at arbitrary 
points in the hyperspace by taking a distance-weighted average of the 
values of h(x) at the random points. The distances are then raised to an 
arbitrary negative exponent weight.exponent (default, −1) to give 
more or less weight to nearby points. This feature effectively assumes 
that the value of the test point is more likely to be equal to the value of 
h(x) at nearby test points. This function also underlies a new functional 
redundancy or uniqueness metric, hypervolume_redundancy  
(cf. Violle et al., 2017; Mouillot et al., 2014) consistent with some 
other usages of this term (Blonder, 2016b; Carmona et al., 2016a). The 
metric is defined as the value of h2(x) evaluated at a test point x, which 
weights the value of h(x) by the probability of observing that value. 
This function can test whether given points are highly unique from 
others in the hypervolume.

We also now provide several summary statistics for hypervol-
ume geometry. These include a function hypervolume_overlap_ 
statistics, that implements indices describing the pairwise over-
lap between hypervolumes (e.g. Jaccard similarity, asymmetric unique 
fraction), and a function hypervolume_distance which deter-
mines the distance from a test point to either the closest point on the 
surface of the hypervolume or the centroid of the hypervolume. The 
centroid can be accessed directly via get_centroid and the volume 
via get_volume. These functions provide a convenient way to de-
scribe geometrical relationships between hypervolumes.

There are also several other minor changes to the package, includ-
ing improvements in graphics quality for plotting, textual summary 
output, and manipulation of multiple hypervolumes using R’s square 
bracket operators. Notably, the package now includes a hypervol-
ume_save_animated_gif function that provides a convenient 
way to save rotating animations of three-dimensional projections of 
hypervolume (cf. Movie S1 in Lamanna et al., 2014).

Performance and usability is improved throughout. All major algo-
rithms now process large datasets in smaller chunks to reduce mem-
ory usage (via a chunk.size argument), and provide status bars and  
diagnostics to better assess progress (via a verbose argument). 

Default parameters have also been changed in many functions, yield-
ing more robust results for many realistic use cases.

3.1 | Syntax and usage

A description of the R code used to access these new functions can 
be found in Table 1. Because of these extensive changes, the behav-
iour of the new package may differ from that of previous versions 
(<2.0.0), but will be better. Syntax is very similar to previous versions, 
but not identical. As such, porting code to the new version is sim-
ple and requires only small syntax changes to core function calls. All 
package demos have been updated to reflect this new syntax as well.  
A detailed guide to recommended syntax changes is provided in Table S1.  
Our suggestions on r package usage for several common situations is 
provided in Table 2.

4  | DEMONSTRATION ANALYSES

We performed a pair of analyses demonstrating the use of these new 
functions on both functional trait and environmental niche data (with R 
code available in the online supporting information). These represent 
two of the most common applications of hypervolume methods. In both 
cases, data were drawn from the Botanical Information and Ecology 
Network (BIEN) database, which includes trait data and range maps for 
plant species in North and South America (http://www.biendata.org). 
Data were obtained using the bien r package.

First, we compiled plant functional trait data to create functional 
hypervolumes for each biome designated by the World Wildlife Fund 
(WWF) (Olson et al., 2001). This analysis can be replicated using 
code in Supporting Text S1 and S2. Second, we analysed bioclimatic 
data to create realized niche hypervolumes for a randomly selected 
set of 100 species of North and South American plants. The two 
separate analyses also apply the new methods to situations in which 
the density of input data is both high (bioclimatic data) and relatively 
sparse (functional trait data), relative to the observed range of data 
values.

4.1 | Functional trait analyses

For functional trait analyses, we selected height, seed mass, and spe-
cific leaf area as the axes for the hypervolumes. This suite of traits 
represent major axes in the plant economic spectrum that describe 
key aspects of plant ecology strategy, including physiology and life 
history (Westoby, 1998). The BIEN3 database included 1,544 plant 
species with coverage for all three traits.

In order to create the hypervolumes for all of the methods, the 
three traits for both taxa were log-transformed and then scaled. 
Hypervolumes were calculated for each of the 14 biomes by overlap-
ping the BIEN3 range polygons with those of the terrestrial ecoregions. 
If a species’ range overlapped with a biome, it was counted as present 
in that biome. This is a highly inclusive method for determining which 

http://www.biendata.org
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species are present in a biome, so the number of species in each biome 
is most likely overestimated, and many species occur in multiple biomes.

4.2 | Niche analyses

We randomly selected 100 plant species from the set of all North and 
South American species with at least 10 valid occurrence records in 
the BIEN3 database. Within each species’ occurrence records, climate 
data were compiled from Worldclim at 10 km resolution (Hijmans, 
Cameron, Parra, Jones, & Jarvis, 2005). We selected three climate 
variables for our analyses: mean annual temperature, mean annual 
precipitation, and precipitation in warmest quarter/(precipitation in 
warmest quarter + precipitation in coldest quarter). Climate layers 
were z-transformed (centred relative to mean and scaled relative to 
standard deviation) prior to hypervolume construction.

4.3 | Parameters

For each of the new algorithms (Gaussian and SVM), we examined the 
sensitivity of the delineated hypervolumes to variation in the underly-
ing parameters.

For the Gaussian KDE method, we varied the bandwidth parame-
ter to determine its effects on the hypervolumes created. We started 
with the default Silverman bandwidth estimator since it is the simplest 
and least computationally intensive, and thus most likely the method 
selected by researchers. For all trait hypervolume analyses, we used a 
single bandwidth value corresponding to the overall Silverman band-
width for the species across all 14 biomes. This baseline bandwidth 
was then used as the bandwidth for each individual biome. For the 
niche hypervolume analyses, the bandwidth was estimated separately 
for each species using the same algorithm. In both analyses, we then 

T A B L E   1  New functions and parameters in the hypervolume r package. Each function may also have additional arguments that are detailed in 
the r package documentation

Function Description Key arguments

hypervolume Generic function to access all hypervolume methods. Checks 
data for common errors and warnings before proceeding

hypervolume_box Hypervolume estimation by hyperbox kernel density 
estimation, replicating functionality in earlier versions of the 
package

kde.bandwidth (bandwidth vector), 
samples.per.point (computational 
parameter)

hypervolume_distance Calculates distance from test point to hypervolume type (whether distance is to boundary or 
to centroid)

hypervolume_estimate_
probability

Estimates probability density at a given point in hyperspace weight.exponent (distance weighting 
power)

hypervolume_gaussian Hypervolume estimation by Gaussian kernel density 
estimation

kde.bandwidth (bandwidth vector), 
samples.per.point (computational 
parameter), sd.count (computational 
parameter)

hypervolume_general_ 
model

Estimates a hypervolume for an arbitrary model over a 
hyperbox region

model (arbitrary statistical model), range.
box (hyperbox sampling region), num.
samples (computational parameter), min.
value (threshold value at which points are 
discarded)

hypervolume_overlap_ 
statistics

Calculates a range of overlap statistics for two hypervolumes 
including Sørensen and Jaccard similarity

hypervolume_project Creates a geographic suitability map based on a set of input 
rasters and the probability density function within a 
hypervolume object

rasters (georeferenced layers to be used as 
predictors), type (binary vs. continuous 
output)

hypervolume_redundancy Estimates functional redundancy metric at a given point in 
hyperspace as the squared probability density at that point

hypervolume_save_ 
animated_gif

Saves an animated GIF of a three-dimensional projection of a 
hypervolume

hypervolume_svm Hypervolume estimation by one-class support vector 
machine

svm.nu (error rate parameter), svm.gamma 
(smoothing parameter), samples.per.
point (computational parameter), sd.
count (computational parameter)

hypervolume_threshold Calculates single or multiple flattened and thresholded 
hypervolumes at a specified threshold, volume quantile, or 
probability quantile

quantile.requested (quantile parameter), 
quantile.requested.type (type of 
quantile)

weight_data Weights data for hypervolume analysis by abundance and 
optionally accounts for uncertainty in each observation

weights (vector of weighting values)
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varied bandwidth by multiplying the baseline bandwidth by a factor of 
0.75 and a factor of 1.5 to demonstrate a range of parameter values 
and hypervolume sizes.

For the SVM method, we varied the two parameters, ν and γ, start-
ing with the default values ν = 0.01 and γ = 0.5. We allowed the pa-
rameter ν to assume the values 0.01, 0.1 and 0.5 and γ the values 0.1, 
0.5 and 2.5. We then created SVM hypervolumes using all nine possi-
ble combinations of these values to show the respective and combined 
effects of both parameters along a range of values.

4.4 | Comparisons

We compared the total volume of the hypervolume delineated by 
each method relative to that delineated by the original hyperbox 
method. These comparisons were made for both trait and niche 
hypervolumes. We also made more qualitative comparisons by ex-
amining hypervolume shape for each method across the range of 
chosen parameter values. To examine differences in set operations, 
we measured the pairwise overlap of the trait hypervolumes for 
three of the biomes: temperate broadleaf and mixed forests; boreal 
forests/taiga; and temperate grasslands, savannas and shrublands. 
The fractional overlap between the hypervolumes was calculated 
by the intersection volume divided by the union volume (Jaccard 
similarity). The three biomes were selected based on their rela-
tively good species coverage and varied degrees of functional trait 
overlap.

4.5 | Geographic analyses

To demonstrate species distribution modeling functionality, we se-
lected one species for which presence data were available, Allium 

parvum (Alliaceae). We used the hypervolume_project func-
tion to map this species’ potential distribution in North America 
using the Worldclim climate raster data described above. We gen-
erated distribution maps using both the KDE and SVM methods. 
We also produced a comparison map (Figure 6) with the same 
presence data using a standard maximum entropy method (Phillips, 
Anderson, & Schapire, 2006) using the default settings in the 
dismo r package.

5  | RESULTS

5.1 | Hypervolume size

The various hypervolume methods and parameter combinations 
give rise to a wide range of values for the volume. The overall 
volume depends on both the method and parameter values cho-
sen, consistent with the different assumptions that underlie each 
method. There are also differences in volumes between the two 
datasets. For the functional trait analyses, the Gaussian hypervol-
umes are smaller than the hyperbox hypervolume, ranging from a 
fifth of the hyperbox volume to almost equal values (Figure 1a). 
The climate niche Gaussian hypervolumes have relative volumes 
similar to those of their functional trait counterparts for band-
width factors of 0.75 and 1. For Gaussian hypervolumes with a 
bandwidth factor of 1.5, however, the climate niche volumes at 
probability quantiles 0.85 and 0.95 reach and exceed the hy-
perbox volume (Figure 1c). Across both datasets, however, the 
SVM hypervolumes are generally smaller than the correspond-
ing hyperbox volume, with the exception of the SVM hypervol-
ume with ν = 0.01 and γ = 0.1, the lowest parameter values tested 
(Figure 1b,d).

T A B L E   2  Guidance for common usage situations

Situation Guideline

Data have unordered categorical axes Do not use hypervolume algorithms

Data have ordered categorical axes Do not use hypervolume algorithms. With caution, convert data to continuous axes 
via, e.g. Gower transformation

Data have different units or scales Rescale data before analysis

Data have missing observations Reduce data to only complete cases and/or reduce dimensionality

Data have few observations For KDE, reduce dimensionality of analysis until loge m > n

Data dimensionality is high Use SVM instead of KDE

Data axes are highly correlated Perform dimensionality reduction, e.g. via principal components analysis

Don’t know what threshold to choose (for KDE) Use quantile-based or classification-statistic-based algorithm to auto-select 
threshold, or repeat analyses for range of thresholds to determine sensitivity of 
result to threshold choice

Don’t know what bandwidth to choose (for KDE) when 
comparing datasets

Use the same algorithm (e.g. Silverman or plug-in estimator) to choose a bandwidth 
for each dataset, or use a fixed bandwidth value across datasets

Trying to compare hypervolumes for datasets with very 
different number of observations (for KDE)

Resample data to fixed number of observations, or use algorithm to auto-select 
threshold and bandwidth (see above)

Results are numerically unstable or unrealistic Increase values of computational parameters

R functions take too long to run Be patient. Increase memory allocation to R. Reduce dimensionality of the analysis. 
With extreme caution, reduce values of computational parameters
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Using default parameters, the relative ordering of volumes was 
fairly similar for both datasets. The hyperbox hypervolumes are 
consistently larger than the default Gaussian (Silverman band-
width estimator, probability quantile = 0.95) and SVM hypervol-
umes (ν = 0.1; γ = 0.5) across both the functional trait and climate 
niche analyses. For the functional traits analysis, the default 
Gaussian hypervolumes were very similar in size to the default 
SVM hypervolumes (Figure 1a,b). In the climate niche analysis, 
the default Gaussian hypervolumes were slightly smaller than 
the hyperbox, followed by the default SVM hypervolume, which 
was much smaller than the other two methods. Thus, the dataset 
being analysed has a moderate impact on the volume at default 
parameter values, but in both datasets, the new methods at de-
fault parameters produce smaller hypervolumes than the original 
hyperbox method.

In the SVM hypervolumes, the parameters ν and γ affect hypervol-
ume size similarly in both analyses. As γ increases, volume decreases, 
and as ν increases, volume decreases. At higher values of both param-
eters, however, the effects of increasing the other become less pro-
nounced (Figure 1b,d).

In the Gaussian hypervolumes, the bandwidth and quantile choice 
have the same effects on α hypervolume size in both analyses. As 
bandwidth increases, volume increases, and as quantile increases, 
volume increases. These relationships were apparent in both datasets, 
although the climate niche hypervolumes consistently had larger vol-
umes relative to the hyperbox than their functional trait counterparts 
(Figure 1c,d).

5.2 | Hypervolume shape

Choice of method impacts the shape of the hypervolume (Figure 2). 
The hyperbox hypervolumes are generally the most jagged and 
blocky, while the Gaussian and SVM hypervolumes are smoother. 
The hyperbox hypervolumes are most influenced by extreme 
points, creating projections from the main body of the shape. 
The SVM hypervolumes display more concavities than either the 
hyperbox or Gaussian hypervolumes. The Gaussian hypervolumes 
are often the smoothest and most regular, although they often in-
clude “islands” in the hyperspace around more extreme data points.

Varying the parameters for the different methods affects the 
resulting shape of the hypervolume. For SVM hypervolumes, the 
size of the hypervolume decreases as both ν and γ increase. Varying 
these two parameters decreases hypervolume size in different 
ways, however. As ν increases while γ is held constant, the size 
of the hypervolume shrinks, but the shape remains fairly similar. 
Increasing γ while holding ν constant also shrinks the hypervolume, 
but this change in size is driven by increased concavity or irregu-
larity in the hypervolume’s shape (Figure 3). For the kernel density 
estimation methods, changes in bandwidth leave the overall shape 
of the hypervolume constant while changing size. Increasing quan-
tile threshold, however, modifies the shape by pulling the hyper-
volume’s borders towards more extreme points (Figure 4). These 
shapes represent the location of the niche in the hyperspace, so 
changes in the shape resulting from method/parameter choice de-
termine the placement of the niche.

F I G U R E   1  Ratio of the hypervolume volume to hyperbox volume for functional trait hypervolumes for 14 biomes (a and b) and the niche 
hypervolumes of 100 plant species (c and d) for each method and parameter combination. (a) Gaussian and (b) SVM hypervolumes of functional 
trait data. (c) Gaussian and (d) SVM hypervolumes of niche data. Gaussian hypervolumes are grouped by threshold value and bandwidth as a 
factor of the Silverman estimate (ES). SVM hypervolumes are grouped by parameters γ and ν

(a) (b)

(c) (d)

Bandwidth                    0.75 ∙ Es 1.0 ∙ Es 1.5 ∙ Es

Quantile                0.75     0.85     0.95     0.75     0.85     0.95      0.75     0.85     0.95

ν 0.01                              0.1                                0.5

γ 0.1       0.5       2.5       0.1       0.5        2.5       0.1       0.5       2.5
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5.3 | Hypervolume overlap

Varying the hypervolume method and chosen parameter values does 
not drastically change the results of hypervolume set operations. 

Regardless of method, the temperate forest and temperate grassland 
hypervolumes were much more similar to each other than either was 
to the boreal forest (Figure 5). This qualitative relationship was pre-
served across methods and parameter combinations. Thus, method 

F I G U R E   2  Hyperbox, Gaussian, and 
support vector machine hypervolumes 
at default parameters for species in (a) 
temperate broadleaf and mixed forests, 
(b) boreal forests/taiga, and (c) temperate 
grasslands, savannas and shrublands
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F I G U R E   3  Support vector machine hypervolumes of plants in temperate forests (red) and boreal forests (blue) for various combinations of 
parameter values
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F I G U R E   4  Gaussian hypervolumes of plants in temperate forests (red) and boreal forests (blue) for varying values of bandwidth as a factor of 
the Silverman estimate (ES) and varying thresholds
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choice should not greatly affect which niches are most similar to 
one another. On the other hand, the quantitative estimates for the 
Jaccard similarity vary both between and within methods (Figure 5). 

Jaccard similarity values were slightly higher for the Gaussian hyper-
volumes than the SVM hypervolumes. The SVM hypervolumes had a 
wider range of similarity values, indicating that parameter choices had 
more of a varied impact on the overlap of SVM hypervolumes than 
of Gaussian hypervolumes. In conclusion, the qualitative relationships 
between measurements of overlap are robust to choices of method 
and parameter, although quantitative values may vary.

5.4 | Geographic distributions

Both the KDE and SVM methods produced visually similar potential 
geographic ranges for A. parvum. The KDE method yields continu-
ous suitability scores, while the SVM method yields binary pres-
ence/absence predictions. The overall geographic maps overlapped 
in key areas, e.g. the Sierra Nevada and Great Basin desert. The 
KDE model predicted higher suitability in southwestern Colorado 
and southern British Columbia than the maximum entropy range 
models, while the SVM model was more congruent. These results 
demonstrate that these new methods provide comparable and 
reasonable outputs for correlative species distribution modelling 
applications.

6  | DISCUSSION

We have presented several novel methods for estimating hyper-
volumes that extend the approach we originally proposed (Blonder 
et al., 2014) and aim to address a range of issues around these ideas. 
Our new Gaussian KDE and SVM methods provide complementary  
approaches to loosely or closely wrap the data, and our new thresh-
olding and weighting algorithms provide more robust ways to inter-
pret hypervolumes in probabilistic contexts.

Our demonstration analyses showed that these new methods 
provide flexibility in the type of shape to be delineated. As ex-
pected, the shape and size of hypervolumes varied with method, 
with consistent and predictable effects of variation in parame-
ters for each. Moreover, the relative ordering of sizes and over-
laps was generally consistent across methods and across datasets, 

F I G U R E   5  Pairwise fractional overlap 
(Jaccard similarity) of hypervolumes 
between temperate forests, boreal forests, 
and temperate grasslands. Fractional 
overlap was calculated by dividing the 
volume of the intersection of the two 
hypervolumes by the volume of their 
unions. Individual points correspond to 
different parameter combinations for 
the different methods. The dotted lines 
correspond to the fractional overlap of 
the hyperbox hypervolumes for the biome 
comparison indicated by color

F I G U R E   6  Species distribution model comparison for the wild 
onion, Allium parvum. (a) Continuous suitability values predicted from 
the Gaussian KDE method. (b) Binary predictions from SVM method. 
(c) Continuous suitability predictions from a standard maximum 
entropy method. Maps were generated using the same presence data 
and climate layers using default settings

(a)

(b)

(c)
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suggesting that these methods all are capable of describing real 
biological variation.

The new methods do introduce a set of biologically relevant 
parameters into an analysis. These include the bandwidth vector 
for the Gaussian KDE and the ν and γ parameters for the SVM. In 
the package we provide default values for each of these parame-
ters that should yield reasonable performance, and which should 
enable robust comparison of data. However, results certainly vary 
depending on the values of these parameters. Ultimately, the choice 
of parameters should reflect investigator belief about how best to 
resolve the trade-off between false positive and false negative er-
rors. Cross-validation approaches could be used to select these pa-
rameters according to some optimality criteria, but we believe this 
flexibility is a benefit rather than a detriment. Other models with no 
free parameters also make very strong assumptions about the types 
of errors that should be admitted. For example, a parameter-free 
range box model has very low false positive error rates, because 
all observed data are included within the model, but can have high 
false negative error rates, because any unmeasured data outside 
the range of the measured data will always be misclassified. This 
is not the case for the more flexible KDE and SVM methods we 
present here.

The growing interest in using n-dimensional hypervolumes to 
answer biological questions indicates a parallel need to consolidate 
operational concepts and develop robust estimation methods. The 
pluses and minuses inherent in any of these algorithms have been 
extensively discussed previously (Blonder, 2016a; Blonder et al., 
2014; Qiao et al., 2017) and remain relevant here. We have not tried 
to present a comprehensive statistical comparison of these hyper-
volume methods to each other and to other existing methods (Elith 
et al., 2006; Junker et al., 2016; Qiao, Soberón, & Peterson, 2015; 
Swanson et al., 2015). A comprehensive comparative study would 
require exhaustive exploration of the different methods using a com-
mon set of simulated data with known statistical properties, subject 
to a variety of sampling scenarios. Such a set of simulations is be-
yond the scope of this work, and will be the subject of a forthcoming 
publication.
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