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 While community-weighted means of plant traits have been linked to mean environmental conditions at large scales, 
the drivers of trait variation within communities are not well understood. Local environmental heterogeneity (such as 
microclimate variability), in addition to mean environmental conditions, may decrease the strength of environmental 
fi ltering and explain why communities support diff erent amounts of trait variation. Here, we assess two hypotheses: fi rst, 
that more heterogeneous local environments and second, that less extreme environments, should support a broader range 
of plant strategies and thus higher trait variation. We quantifi ed drivers of trait variation across a range of environmental 
conditions and spatial scales ranging from sub-meter to tens of kilometers in montane and alpine plant communities. 
We found that, within communities, both environmental heterogeneity and environmental means are drivers of trait 
variation. However, the importance of each environmental factor varied depending on the trait. Our results indicate 
that larger-scale trait – climate linkages that hold across communities also apply at small spatial scales, suggesting that 
microclimate variation within communities is a key driver of community functional diversity. Microclimatic variation 
provides a potential mechanism for helping to maintain diversity in local communities and also suggests that small-scale 
environmental heterogeneity should be measured as a better predictor of functional diversity.   

 What are the central drivers of functional diversity in 
ecological communities? Th is long-standing question 
(Schimper and Fisher 1903, Westoby and Wright 2006) is 
often addressed by studying functional composition across 
broad environmental gradients and comparing observed 
diversity to a null model of randomly assembled com-
munities (Keddy 1992, Weiher and Keddy 1995, Weiher 
et   al. 1998, Cornwell et   al. 2006, Kraft et   al. 2015). Often, 
focus is placed on determining whether local community 
diversity is shaped by abiotic factors through environmen-
tal fi ltering (Ackerly 2003, Swenson and Enquist 2007). 
While many studies have demonstrated that communities 
have diff ering amounts of trait variation (Kraft et   al. 2008, 
Cornwell and Ackerly 2009, Messier et   al. 2010, Baraloto 
and Couteron 2010, Lamanna et   al. 2014), quantitative 
predictors of this variation are still needed. To assess the 
relative strength of abiotic drivers on local community func-
tional composition, tests of ecological theory require rigor-
ous analyses of the relationship between community trait 
variation and local environmental conditions (McGill et   al. 
2006). More detailed measurements of how environmental 
means and environmental heterogeneity vary at both large 
and small spatial scales may provide a key to understanding 
the strength of environmental fi lters. Such scale-dependent 
measures may also help explain trait variation within and 

across communities (Weiher and Keddy 1995, Swenson and 
Enquist 2007, 2009, Kraft et   al. 2008). 

 Most studies of trait-climate linkages focus on assessing 
mean environmental conditions within communities (Kraft 
et   al. 2015). At a local scale, trait-based ecology has largely 
treated observed community trait variation as refl ecting 
internal niche partitioning driven by species interactions 
(Keddy 1990, Weiher and Keddy 1995, Wright et   al. 2001). 
However, environmental fi ltering has also been shown 
to operate within communities (Adler et   al. 2013). Th us, 
the environmental mean hypothesis states that the mean 
climatic conditions over a given area fi lter for a set of traits 
that optimizing growth and reproduction. 

 In contrast to the environmental mean hypothesis, two 
established ecological relationships support the role of local 
abiotic variance or heterogeneity as a key driver of functional 
diversity. First, several studies have demonstrated that small-
scale environmental heterogeneity can aff ect the ability of 
diff erent plant species to persist within communities (Palmer 
and Dixon 1990, Chesson 2000a, Baraloto and Couteron 
2010, Scherrer and K ö rner 2011). We call this the ‘environ-
mental mean’ hypothesis. Indeed, many studies have linked 
variation in species richness to environmental heterogene-
ity (Palmer and Dixon 1990, Dufour et   al. 2006, Opedal 
et   al. 2015, reviewed by Stein et   al. 2014). Second, regional 
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variation in plant functional traits is linked to heterogeneity 
in climate (Diaz et   al. 1998, Swenson et   al. 2012,  Š  í mov á  
et   al. 2014). However, it is still not clear whether this link 
between functional traits and climate extends to the micro-
climate scale and drives within-community functional com-
position. To our knowledge, only one other study (Price 
et   al .  2017) has addressed this question directly. Th ey fi nd 
support for the role of soil depth and moisture heterogeneity 
in driving several functional traits. Other studies of micro-
climate eff ects on trait variation are limited in scope. Th ese 
studies have generally examined the eff ect of microclimate 
variability created by nurse plants (Garc í a-Cervig ó n et   al. 
2015, Sch ö b et   al. 2012) or measured traits of focal species 
rather than entire communities (Opedal et   al. 2015). 

 Environmental fi ltering is a central concept in under-
standing the drivers of community-scale functional diversity. 
Niche theory states that species have diff erent environmen-
tal requirements, and so vary in their performance along 
environmental gradients based on their ecological strategies 
(Grime 1977, Weiher et   al. 1998, McGill et   al. 2006, Violle 
and Jiang 2009). At the extreme edges of a species ’  envi-
ronmental niche, individuals will have diffi  culty surviving 
or reproducing, and beyond this range of suitable conditions 
environmental fi ltering will remove species with unsuitable 
phenotypes from the community (Pulliam 1988, Angert 
2009 ; see also Janzen 1985). 

 While most studies on the link between functional traits 
and climate focus on large-scale relationships, the success 

of individuals depends on the conditions they experience 
directly rather than mean site conditions (Diaz et   al. 1998, 
Kraft et   al. 2008). Th erefore, sites with a wide range of 
microclimates or resources  –  in eff ect, several distinct 
environmental fi lters, perhaps themselves created by biotic 
interactions with individuals of the same or other species  –  
should support a wider distribution of ecological strategies 
and more variation in functional traits (Tilman 1994, Grime 
2006, HilleRisLambers et   al. 2012, Adler et   al. 2013, Laughlin 
and Joshi 2015, Kraft et   al. 2015, Price et   al. 2017). 

 From the perspective of coexistence theory, increased 
environmental heterogeneity provides more opportunities 
for niche partitioning and should be refl ected by higher 
functional diversity and ultimately higher species richness 
(Chesson and Warner 1981, Tilman 1982, Kohn and Walsh 
1994, Chesson 2000a, b, Amarasekare 2003). While there 
are few trait-based tests of the role of environmental het-
erogeneity, ecology theory has increasingly discussed its 
importance in community assembly (Palmer and Dixon 
1990, Kraft et   al. 2015, Grime 2006). 

 Trait variation within a given area could be driven by 
environmental heterogeneity or by environmental means 
through a variety of processes (Fig. 1). First, local trait 
variation could be driven by local environmental variation. 
We call this the  ‘ environmental heterogeneity hypothesis ’ . 
For example, a positive relationship between environmental 
variability and trait variation across communities can occur 
when all communities share a common trait-environment 
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  Figure 1.     Two hypotheses for the drivers of trait variation based on environmental means and heterogeneity. Th ese hypotheses are illustrated 
for three test communities with either a positive or negative trait – environment relationship between communities (gray line) or within 
communities (black line), although relationships between environmental heterogeneity and trait variation could occur even without a 
consistent link between trait values and environmental values. In the environmental heterogeneity hypothesis, (A) Local and global trait-
environment relationships can produce between-community correlation between trait variation and environmental heterogeneity. (B) 
However, even without consistent trait – environment relationships across communities, trait variation can still be correlated with environ-
mental heterogeneity. In the environmental extremes hypothesis, (C, D) communities can vary in their trait distributions (vertical bars). 
Th ose with more extreme environments have stronger environmental fi ltering and reduced trait variation. Local-scale measurement of traits 
over partial gradients (colored bars) should demonstrate that communities with more extreme environmental means have less trait varia-
tion. Unimodal relationships are also possible if a complete gradient is studied (white bars).  
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relationship (Fig. 1A). In this case, broader ranges of envi-
ronmental heterogeneity yield equivalently broad ranges of 
trait variation. However, a similar across-community pattern 
can also arise even with between-community diff erences in 
trait – environment relationships (Fig. 1B). Even if there is 
no trait – environment relationship within or among com-
munities, higher environmental heterogeneity could still 
yield higher trait variation. Th at is, there may be a relation-
ship between trait and environment variances even without 
a covariance between the trait and environment. Th us, any 
environmental fi ltering scenario in which higher environ-
mental variance yields higher trait variance will be suffi  cient 
to support this hypothesis. 

 Second, trait variation could be driven by environ-
mental means  –  the  ‘ environmental means hypothesis ’  
(Fig. 1C – D). Diff erent ecological strategies are more viable 
under diff erent large-scale climatic regimes. At either bio-
logical extreme of a climate gradient, environmental fi ltering 
should reduce species richness and thus trait variation as 
increasingly large numbers of strategies become nonviable 
(von Humboldt and Bonpland 1807). For example, many 
species can tolerate warm conditions, but few species can 
tolerate very cold or very hot conditions. Generally, the 
strength of environmental fi ltering is understood to refl ect 
environmental harshness (Terborgh 1973, Weiher et   al. 
1998, Boucher et   al. 2013). Few studies can capture a full 
biological gradient, and instead measure only a smaller 
fraction of the gradient. Over such scales this curvilinear 
relationship becomes approximately linear, yielding either 
a positive or negative relationship between environmental 
means and trait variation. 

 Th e environmental mean and heterogeneity hypotheses 
are not mutually exclusive and may both play ecologically 
relevant roles in determining trait variation. Additionally, 
these hypotheses may be easily confounded because distri-
butions with higher means often also have higher variances 
because of proportional rescaling. To avoid this scaling issue, 
it is necessary to assess covariation or co-linearity between 
environmental metrics and to use scale-independent mea-
sures of variation. We are unaware of any trait-based tests 
that contrast the predictions made by the environmental 
variation and environmental means hypotheses. 

 Here, we examine the relationship between variation in 
several traits and both environmental means and environ-
mental heterogeneity (temperature and soil moisture axes) 
using plant communities spanning a  �    700 m elevation gra-
dient in the Colorado Rocky Mountains. Sites included 25 
spatially nested montane, subalpine, and alpine transects. We 
simultaneously test the role of local environmental means 
and environmental heterogeneity in driving functional trait 
variation within communities.   

 Material and methods  

 Study sites 

 Five study sites were in montane, subalpine, and alpine 
meadows in the Gunnison Valley, Colorado. Site elevation 
ranged from 2820 to 3537 m a.s.l. Growing season for these 
sites spans approximately June – August with snow cover 

typically from November to May. While some forested areas 
also occur at these elevations, study sites were located within 
large open areas dominated by herbaceous vegetation includ-
ing grasses, rushes, forbs, and in some cases, small shrubs. 

 Within each of these fi ve study sites, we assessed small-scale 
community functional composition and microclimate varia-
tion by delineating fi ve transect lines spaced 10 m apart paral-
lel to the downslope gradient. Each 10 m transect was then 
characterized at nine logarithmically spaced sampling loca-
tions perpendicular to the downslope gradient (Fig. 2). Th e 
overall eff ect was to create a grid pattern that enabled us to 
assess variation in traits and environment at a range of spatial 
scales, while still working within the same overall site type.   

 Environmental measurements 

 In June and July of 2015, we placed one iButton Th ermo-
chron datalogger at each sampling location (n    �    225 in 25 
transects at fi ve sites). Each logger recorded temperature 
every 30 min for 22 – 60 days, depending on site accessibility 
given snowmelt dates. Measurement at all sites overlapped 
between 14 July and 3 August, with measurement at lower 
elevation sites beginning and ending earlier than measure-
ment at higher elevation sites. We removed all iButtons from 
their sites by 7 August. Each iButton was suspended 1 – 2 cm 
above the ground on a galvanized steel nail and covered by 
a radiation shield made from white duct tape. Prior to this 
study, we tested several radiation shield designs and found 
that this design minimized thermal buff ering (Supplemental 
material Appendix 1 Fig. A1). 

 We measured soil moisture at each sampling location 
next to the iButton using a time-domain refl ectance mois-
ture probe. Measurements were standardized at 10 cm depth 
and conducted on days with no rain in the previous 12 h. 
Moisture was measured at each sampling location (n    �    225) 
approximately once per week in July and early August (n    �    3 
at higher elevation sites, n    �    4 at lower elevation sites).   

 Functional trait measurements 

 Close to the date of peak biomass for each site, we mea-
sured traits of the fi ve plants (or for clonal species, ramets) 
with leaves whose vertically projected distance to the data-
logger was smallest, resulting in a spatially-explicit sample 
of the plants in each transect. Because we were interested 
in estimating community-wide trait distributions, we used 
this taxon-free sampling approach (Paine et   al. 2015). Th is 
approach also accounts for both inter- and intra-specifi c 
variation in traits at the local scale, rather than averaging 
species means (Price et   al. 2017). We selected plant height, 
leaf area, specifi c leaf area (SLA) and leaf dry matter con-
tent (LDMC) as relevant traits because they are commonly 
thought to be linked to major ecological strategy axes (Diaz 
et   al. 1998, Westoby 1998). For each plant, we measured 
the height of the highest leaf (i.e. not including fl owering 
stalks) and collected two leaves. We stored collected leaves in 
a cooler with ice packs and a damp paper towel until making 
measurements no more than six hours later. In the lab, we 
measured leaf area, wet weight and dry weight to calculate 
SLA and LDMC (P é rez-Harguindeguy et   al. 2013). Dry 
weight was measured after a minimum of 48 h in a drying 
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used multiple imputation by chained equations (R package 
 ‘ mice ’ ) to impute missing values using measured values of 
all other traits (213 LDMC values, 322 SLA values). We 
selected a single random imputation of the dataset to con-
duct linear models. Th is imputation method can yield an 
unbiased estimate of the true parameters, improving model 
outputs over missing data (Horton and Kleinman 2007, van 
Buuren and Groothuis-Oudshoorn 2011). To test the eff ects 
of imputed values on model results, we also ran models 
with incomplete cases omitted. Th is resulted in largely the 
same model outcomes (Supplemental material Appendix 1 
Fig. A2). 

 For each transect (n    �    25, nested within fi ve sites), we 
calculated the standard deviation in trait values across mea-
sures of the mean and spatial heterogeneity in microclimate. 

oven at 65 ° C. Leaf area was calculated by digitally scanning 
each leaf individually and then analyzing the images using an 
ImageJ program (available at  <  www.github.com/bblonder/
leafarea/  > ). SLA was calculated as the ratio of leaf area to 
dry leaf mass. LDMC was calculated as 100 times the ratio 
of leaf dry mass to leaf wet mass.   

 Statistical analysis 

 Before conducting analyses, we removed high LDMC and 
SLA values (LDMC    �    50 g dry / 100 g wet; SLA    �    470 cm 2  
g  – 1 ) for a subset of leaves too small to accurately measure dry 
weights with our balance (precision    �    0.01 g). Upper cut-
off  values were chosen based on the 97.5 quantile reported 
in the dataset of Kattge et   al. 2011. For linear models, we 

  Figure 2.     Five communities were sampled using logarithmically-spaced transects (A) spaced 10 m apart at each of fi ve sites (B).  
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 While we primarily examined individual traits, we also 
assessed all traits together using a mixed model with response 
variable as convex hull volume, a multidimensional func-
tional diversity metric (Cornwell et   al. 2006). Results for this 
analysis are reported in the supplementary material (Supple-
mentary material Appendix 1 Fig. A3) 

 To determine the explanatory value of these models, 
we used the R package  ‘ MuMIn ’  to calculate marginal and 
conditional r 2 -values (Nakagawa and Schielzeth 2013, Johnson 
2014). We also calculated a metric of variable importance as 
the deviance (changes in negative log-likelihoods) between 
full models and those omitting the variable of interest. To 
check for multicollinearity of predictors, we calculated vari-
ance infl ation factors (Frank 2011). To examine the spatial 
structure and autocorrelation of the data, we calculated semi-
variograms (Supplementary material Appendix 1 Fig. A4) and 
conducted a variance partitioning analysis using the R pack-
age  ‘ varComp ’  on a hierarchical mixed model for each trait 
(package  ‘ lme4 ’ ) (Supplementary material Appendix 1 Fig. A5).   

 Data deposition 

 Data available from the Dryad Digital Repository:  <  http://
dx.doi.org/10.5061/dryad.772h7  >  (Stark et   al. 2017).    

 Results  

 Trait and environment patterns 

 Across the elevation gradient there was wide variation in the 
means and standard deviations of environmental conditions 
and plant traits (Table 1). Transect mean temperature ranged 
from 9.3 to 14.4 ° C, while standard deviation in temperature 

Mean temperature and moisture were calculated as the 
average value of available measurements from all sampling 
points and times. For spatial heterogeneity in temperature, 
we determined the 95th percentile temperature on each day 
for each sampling location (n    �    225). We then calculated the 
coeffi  cient of variation (CV) for these temperatures among 
the nine sampling locations in each transect on each day. 
Finally, we calculated the average CV across all measured days 
for each transect (n    �    25). Th is approach allowed compari-
son of spatial heterogeneity in the highest daily temperatures 
for each transect across all sites. For spatial heterogeneity in 
moisture, we calculated the CV in soil moisture across the 
nine sampling locations in each transect for each sampling 
date. We then calculated the average CV across all sampling 
dates for each transect (n    �    25). Th is approach mirrored 
calculation of spatial heterogeneity in temperature but used 
the single measurement available for each sampled date 
rather than a daily peak. 

 All measures of abiotic mean and heterogeneity were 
log-transformed to improve normality. Trait values were 
approximately normally distributed and were not trans-
formed. We then rescaled environmental variables and traits 
to zero mean and unit variance to improve comparability. 

 To test the two main predictions, we built a linear mixed 
model for each trait. We then created a model with trait 
standard deviation as a dependent variable, fi xed eff ects 
for temperature heterogeneity, soil moisture heterogeneity, 
temperature mean, and soil moisture mean, and with a ran-
dom intercept for site to account for the nesting of transects 
within sites. Finally, we calculated bootstrapped confi dence 
intervals for each fi xed eff ect. When these intervals did not 
overlap zero, we assumed the predictor had a signifi cant 
eff ect in the model. 

  Table 1. Summary of environmental conditions and plant traits across sites.  

Elevation
(m)

Temperature (°C) Moisture (%) Height (cm) LDMC (g/100g) SLA (cm 2  g  – 1 ) Leaf area (cm 2 )

Site Transect Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Road 2820 A 14.3 4.1 11.8 2.9 22.0 13.0 28.1 10.4 188.6 77.9 9.5 14.0
B 14.0 3.7 12.6 3.0 24.2 13.8 29.3 9.7 176.0 62.1 8.9 8.9
C 13.8 3.0 13.4 3.5 25.3 17.5 31.2 9.2 193.6 85.1 9.1 8.7
D 14.4 3.9 12.0 3.4 28.8 17.5 28.1 10.8 214.5 76.7 9.2 10.3
E 13.3 3.9 20.5 4.4 20.5 16.1 30.2 9.4 210.3 78.0 15.2 17.6

Pfeiler 3175 A 12.5 3.2 21.4 3.1 33.7 16.0 28.1 6.9 248.8 60.9 9.0 6.3
B 11.5 2.6 23.2 3.5 49.4 29.7 27.2 7.7 220.9 73.7 31.8 55.9
C 10.4 2.6 28.7 4.5 96.8 46.3 15.6 3.8 284.4 92.4 94.8 121.6
D 11.2 2.4 26.3 4.8 67.9 25.1 22.7 6.8 253.3 85.9 37.8 48.9
E 10.9 1.8 25.7 4.6 76.0 25.2 22.8 6.0 261.5 78.8 50.3 55.3

Painter Boy 3357 A 12.4 1.8 14.8 4.2 7.7 4.4 28.8 11.7 282.7 85.7 3.5 4.6
B 11.9 2.4 17.5 4.4 17.1 13.6 30.1 11.0 192.7 76.7 9.5 8.7
C 9.3 5.0 25.5 5.9 75.4 51.1 19.1 7.2 275.1 85.0 38.6 50.1
D 9.8 2.3 23.7 4.4 52.3 38.9 17.8 6.4 265.0 90.1 63.4 85.3
E 10.2 3.6 21.2 4.2 53.5 33.8 20.1 6.4 260.5 76.0 55.6 74.1

Cinnamon 3473 A 10.6 2.1 17.5 6.6 11.2 5.8 33.7 11.7 257.4 97.0 3.2 4.9
B 11.1 2.3 19.4 4.7 8.6 4.7 31.9 10.8 252.5 102.8 2.4 3.8
C 11.2 3.1 20.3 6.7 10.8 5.1 30.8 10.9 241.2 109.4 4.0 8.1
D 11.4 2.2 24.4 4.8 9.9 6.7 32.5 11.7 264.8 95.9 3.0 4.3
E 10.8 2.0 23.2 4.6 9.7 5.0 29.4 11.2 250.6 93.5 3.6 3.6

Baldy 3537 A 11.1 1.4 10.1 2.8 4.2 2.5 30.8 9.9 199.4 68.7 2.4 2.0
B 11.0 2.0 11.5 2.1 5.6 4.2 29.3 10.4 196.2 72.1 2.6 2.6
C 10.9 1.7 8.9 1.1 6.2 7.4 29.4 7.7 181.7 68.1 3.9 4.5
D 11.3 1.9 9.0 1.9 6.4 6.1 32.5 10.0 178.8 62.9 2.8 3.1
E 11.5 2.4 11.1 2.2 7.9 7.3 30.5 8.3 194.3 76.0 3.4 4.9
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sampling locations, rather than at the transect or site scale 
(Supplementary material Appendix 1 Fig. A5). Indeed, for 
most traits, small scale variation (within sampling points) 
accounted for  �    50% of the observed trait variation.   

 Effects of environmental means and variation 

 Trait variability in all traits except SLA was predicted by 
transect mean environmental conditions (mean tempera-
ture), while variability in two traits (height and LDMC) 

ranged from 1.7 to 5.0 ° C. Mean moisture ranged from 8.9 
to 25.7%, while standard deviation in moisture ranged from 
1.1 to 6.7% (Fig. 3). Transects contained 8 – 19 sampled spe-
cies (see Supplementary material Appendix 1 Table A1 for 
full species list by transect). 

 Semivariograms also indicated that most spatial variation 
in traits occurred at or below spatial scales characteristic of 
individual transects (Supplementary material Appendix 1 
Fig. A4). Variance partitioning analysis indicated that most 
trait variation occurred either between or within individual 

(A)

(B)

  Figure 3.     Observed relationships between trait and environmental values. (A) Relationships between mean trait values and mean environmental 
values at each sampling site (n    �    225). (B) Relationships between trait standard deviations in each transect (n    �    25) and environmental means 
and heterogeneity. X-axes are presented with a visual log transformation. All environmental variables were log transformed to improve 
normality in linear modelling. Dark blue circles-3537 m; light blue-3473 m; yellow-3357 m; orange-3175 m; red-2820 m.  
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between richness and functional diversity (Petchey and 
Gaston 2002), since the conditions supporting ecological 
strategies (traits) of more species also occur in heteroge-
neous environments. Here, trait values and environmen-
tal conditions were related even within small (10 m long) 
transects, leading to relationships between trait values, 
within-community heterogeneity, and local mean environ-
mental conditions. While relationships between trait varia-
tion and environmental means have been documented in 
many other studies (Diaz et   al. 1998, Swenson et   al. 2012, 
 Š  í mov á  et   al. 2014), to the best of our knowledge this study 
is the fi rst to show that there is a sizeable eff ect of small-scale 
local heterogeneity in temperature and soil moisture on 
community-level trait variation. Th ese results complement 
recent documentation of the role of soil depth and moisture 
heterogeneity in driving functional diversity (Price et   al. 
2017) and demonstrate the value of examining eff ects of 
heterogeneity and mean conditions simultaneously within 
communities. However, our results also contrast with sev-
eral studies that have proposed or found negative or neutral 
relationships between local heterogeneity and species diver-
sity when mediated by species interactions or disturbance 
regimes (Baer et   al. 2004, Tamme et   al. 2010, Bartels and 
Chen 2010). 

was predicted by within-transect environmental variability 
(Fig. 4). Th ese results were not due to predictor collinear-
ity as variance infl ation factors were    �    2.5 for all models. 
Standard deviation in height was best predicted by both 
environmental means and heterogeneity (mean temperature 
95% CI [ – 1.120,  – 0.482] SD from mean, temperature CV 
95% CI [0.108, 0.490] SD from mean). Standard deviation 
in LDMC was also predicted by both environmental means 
and heterogeneity (moisture CV 95% CI [0.002, 0.486] SD 
from mean, mean temperature 95% CI[0.185, 1.031] SD 
from mean). Standard deviation in leaf area was predicted 
by mean temperature (95% CI [ – 1.382,  – 0.283] SD from 
mean). However, no environmental variables signifi cantly 
predicted functional richness distributions (Supplementary 
material Appendix 1 Fig. A3). 

 Fixed eff ects within these models explained 23 – 47% of 
the variation (marginal r 2 ), while the full models explained 
60 – 95% of the variation (conditional r 2 ; Table 2). Individual 
signifi cant environmental predictor variables explained 
4 – 17% of the variation using a deviance statistic, with 
mean temperature or mean moisture explaining more varia-
tion across models (see Supplementary material Appendix 1 
Table A2 for full results).    

 Discussion 

 Our results showed that both environmental heterogeneity 
and environmental means are drivers of trait variation 
within communities. However, the importance of each 
environmental factor varied depending on the trait of inter-
est. Th erefore, both hypotheses (Fig. 1) received partial sup-
port. Th e local-scale relationships investigated here provide 
a more direct explanation for the established links between 
heterogeneity and species richness (Stein et   al. 2014) and 
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  Figure 4.     Eff ect of environmental means and variation on standard deviation of (A) leaf area, (B) height, (C) leaf dry matter content 
(LDMC), and (D) specifi c leaf area (SLA). See Methods for details of data transformations and linear mixed models. Horizontal bars show 
bootstrap 95% confi dence intervals from a linear mixed model with all environmental variables for each trait. Bars colored blue have con-
fi dence intervals that do not overlap zero. Center points show parameter estimates.  

  Table 2. Explanatory power of linear mixed models, based on 
Nakagawa and Schielzeth 2013 and Johnson 2014. Marginal r 2  
represents the fraction of variance explained by fi xed effects; 
conditional r 2  represents the fraction of variance explained by the 
full model.  

Modeled trait Marginal r 2 Conditional r 2 

Height 0.47 0.95
SLA 0.23 0.60
LDMC 0.42 0.87
Leaf area 0.44 0.86
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fi ltering based on light resource requirements (e.g. Fajardo 
and Siefert 2016). Th us, it may not always be possible to 
tease apart environmental fi ltering and biotic interactions in 
community assembly, particularly at scales where individu-
als can interact with multiple biotic and abiotic conditions 
(Tamme et   al. 2010). 

 Th e results of this study and several others (Swenson 
and Enquist 2009, Baraloto and Couteron 2010, Scherrer 
and K ö rner 2011) do point to the need to measure 
environmental conditions at scales relevant to physiological 
and ecological processes. While detailed measurements are 
inherently more challenging to conduct, new remote sens-
ing technologies including infrared cameras (Costa et   al. 
2013, Faye et   al. 2015) and hyperspectral imaging (Asner 
et   al. 2015) can make measurements of microclimate and 
trait variation more tractable. Determining the appropriate 
spatial scales at which to conduct these analyses remains an 
open question. Our variance partitioning and spatial vario-
gram analyses showed that in the communities studied here, 
high levels of variation in both traits and climate occurred 
at the  �    20 cm scale (Supplementary material Appendix 1 
Fig. A4 – A5). We note that at these small scales, organisms 
can alter their surrounding environmental conditions  –  for 
example, a plant with larger leaves reducing temperatures 
through shading. Th erefore, while this study investigates 
empirical predictors of community functional trait distri-
butions, feedback from organisms makes it diffi  cult to tease 
apart cause and eff ect. 

 Broadly, this study shows the importance of small-scale 
environmental conditions (both means and heterogeneity) 
in driving community trait variation. Our results indicate 
that within-community functional trait variation can be a 
large component of the observed trait variation ( ∼ 50%) and 
can be driven in part by local abiotic factors including envi-
ronmental variability. Th us, the presumed matching between 
phenotypes and the abiotic environment (Norberg et   al. 
2001, Enquist et   al. 2015) may happen at much fi ner spatial 
scales than previously assumed. Intriguingly, our results also 
suggest that observed measures of community trait variance 
may be a good proxy for the degree of local abiotic heteroge-
neity. Understanding local linkages between environmental 
conditions, physiological tolerances and species interactions 
may ultimately prove important for managing functional 
diversity and ecosystem processes in applied contexts 
(Lavorel and Garnier 2002, Laughlin 2014). For example, 
increased heterogeneity could help to buff er communities 
against changes in mean environmental conditions (Fridley 
et   al. 2011, Scherrer and K ö rner 2011). Th e mechanisms 
linking these variables should be relevant at both local and 
regional scales, suggesting that local-scale environmental 
heterogeneity as well as environmental means are key drivers 
of functional diversity globally. 

  Acknowledgements  –   Th e Rocky Mountain Biological Laboratory 
and United States Forest Service provided research permits for this 
work. Amanda Henderson assisted with planning and data collec-
tion. Th e Plant Ecology group at the Department of Biology, 
NTNU provided feedback on a draft manuscript. 
  Funding   –  JS, RL, AH and BJE were supported by NSF award 
EF-1065844. Research logistics for the project were also supported 
by a fellowship from the Aspen Center for Environmental Studies 

 A range of mechanisms could generate the observed 
relationships between trait variability and environmental 
conditions (Fig. 3, 4). Th e relationship between height and 
temperature heterogeneity is consistent with variation in 
thermal environments expected due to increased boundary 
layer thermal conductance and reduced longwave heating 
for taller plants (Monteith and Unsworth 2007). Th e 
relationship between moisture heterogeneity and LDMC 
variation is consistent with the importance of water avail-
ability for determining water allocation within plant tissues 
(Lambers et   al. 2008). Mean temperature was negatively 
related to variation in both height and leaf area but posi-
tively related to variation in LDMC. Th is result may refl ect 
trait-specifi c responses to environmental gradients, where 
either high or low values of an environmental variable can be 
more limiting depending on the trait of interest. For exam-
ple, the negative relationship between leaf area variation 
and mean temperature is consistent with a reduced range 
of possible energy balance strategies in cold environments 
(Nicotra et   al. 2011), while the positive relationship between 
LDMC variation and mean temperature is consistent with 
a reduced range of possible carbon allocation strategies in 
warm environments (Wilson et   al. 1999). 

 Th e climate variables we explored had a large role in 
explaining trait variation. Marginal r 2 -values ranged from 
0.23 to 0.47 for the linear mixed models. Th ese values are 
high given that other conditions such as soil nutrient load 
(Wright et   al. 2001, Lavorel and Garnier 2002), soil depth 
(Price et   al. 2017), and light availability (Poorter 1999) may 
also play a large role in determining plant trait values. While 
we did not measure these variables in the current study, 
their heterogeneity may also contribute to and drive trait 
variation across scales, and be determined by both external 
climatic conditions and biotic interactions, e.g. shading of 
one individual by another. 

 Non-environmental processes also may have strong 
eff ects on trait variation at the local scale. Many previous 
studies have focused on internal niche partitioning driven 
by species interactions (Keddy 1990, Weiher and Keddy 
1995, Wright et   al. 2001). In addition, dispersal limita-
tion or mass eff ects from nearby communities (Leibold 
et   al. 2004, Ozinga et   al. 2005) may lead to changes in trait 
variance without any direct eff ect from small-scale envi-
ronmental conditions (Enquist et   al. 2015). Such eff ects 
are widely thought to be important in determining local 
richness patterns (Hurtt and Pacala 1995, Hubbell 2001) 
and should also be relevant for trait distributions (but see 
Spasojevic and Suding 2012). 

 Th e increased role of environmental heterogeneity we 
propose here does not necessarily imply that abiotic fac-
tors are more important than biotic factors in community 
assembly. Rather, it suggests that two of the major com-
ponents of community assembly  –  environmental fi ltering 
and biotic interactions  –  are closely linked and possibly not 
separable. Th is conclusion seemingly contrasts with concep-
tual frameworks (HilleRisLambers et   al. 2012, Kraft et   al. 
2015) in which assembly is seen as a sequential process of 
fi ltering followed by interactions. At suffi  ciently fi ne spa-
tial scales, these two processes may become functionally 
equivalent. For example, individual plants can shade out 
other plants  –  a competitive interaction  –  but do so by 
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