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by broad-scale models, then stacking independent species  
distribution models to predict species assemblages (sensu 
Guisan and Rahbek 2011, Calabrese et al. 2014) will provide 
misleading predictions of fine-scale community assembly. 
Thus, a better understanding of species associations across 
scales could improve predictions of the dynamics of local 
community composition in changing environments.

The goal of this paper is to improve the tools needed to 
detect interspecific associations from co-occurrence data. 
We first briefly describe the development of co-occurrence 
methods and then draw from different lines of research to 
present a more complete and flexible general framework  
for inferring species associations that overcomes multiple 
challenges faced by previous approaches.

From experiments to co-occurrence methods

Efforts to infer species associations and their role in structur-
ing communities have a long history. Traditionally, associa-
tions have been derived from small-scale field observations 
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An unresolved question in ecology is how species assem-
blages come together at different spatial scales from regional 
species pools to form local communities (Weiher et al. 2011, 
HilleRisLambers et al. 2012). Some subsets of species may 
be consistently associated or dissociated in assemblages due 
to multiple processes including chance, species interactions, 
and the indirect effect of showing the same (or opposite) 
response to environmental conditions. While the effect of 
broad-scale environmental filtering and dispersal limitation 
can be assessed using niche modeling techniques (De Marco 
et al. 2008, Guisan and Rahbek 2011, Normand et al. 2011), 
the influence of species interactions and local environmen-
tal conditions on community assembly is more challeng-
ing to measure and incorporate into predictions (Kissling  
et  al. 2012, Pottier et  al. 2013, Thuiller et  al. 2013, 
Wisz et  al. 2013, Araújo and Rozenfeld 2014). If species 
interact with each other or share resource or scenopoetic 
requirements (Soberón 2007) not adequately described 
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(MacArthur 1958, Bullock et  al. 2000) or manipulative 
experiments (Stewart and Aldrich 1951). Such methods may 
be suitable for studying associations among a few species at 
local scales. However, addressing whether small-scale associa-
tions occur consistently across large regions raises major prac-
tical issues. Experimental data is time-consuming to obtain 
even at small scales (e.g. Bullock et al. 2000, Callaway et al. 
2002b), so these approaches are unfeasible for large numbers 
of species because the number of possible interactions grows 
rapidly with assemblage size. For example, n  100 species 
have 4950 possible pairwise interactions and 161 700 pos-
sible three-way interactions.

An alternative approach for detecting associations is to 
gather occurrence data from field observations and analyze 
species co-occurrence patterns. Such approaches were widely 
used during discussions of the ‘checkerboard’ paradigm for 
forbidden combinations of species on islands, with extensive 
debate over the need for null models to compare observed 
association patterns to random expectation (Diamond 1975, 
Connor and Simberloff 1979). The recent increase in avail-
ability of occurrence data has brought a renewed interest in 
using correlations and algorithms to infer species associations 
and the mechanisms behind them (Bruelheide 2000, Blick 
and Burns 2009, Blois et al. 2014). Since the 1970s, statisti-
cal approaches have been refined to simultaneously analyze 
co-occurrence patterns of multiple species pairs (Gotelli and 
Ulrich 2010). The main idea is to create a community matrix 
where rows are species, columns are sites and elements rep-
resent the observed presence/absence or abundance of each 
species at each site. The matrix is then compared to a set 
of randomized matrices in order to detect non-random co-
occurrence patterns (Connor and Simberloff 1979, Gotelli 
and Ulrich 2010). Modern updates to null-model-based co-
occurrence approaches can test the effects of environmental 
drivers, species interactions, or both in structuring com-
munities; for approaches based on randomized null models 
see Gotelli et  al. 2010, Ulrich et  al. 2012; for approaches 
based on analytical null models see Araújo et al. 2011, Veech 
2013.

Three missing ideas

One challenge that most previous co-occurrence approaches 
ignore is the potential effect of other species on a particular 
pairwise association, i.e. indirect effects (Brown et al. 2004, 
Harris 2015). If two competing species share a positive (or 
negative) relationship to a third species, their occurrences 
could be positively correlated, and thus an indirect effect 
(correlation) is inferred when the true effect (partial correla-
tion) is actually negative (Brown et  al. 2004, Schäfer and 
Strimmer 2005). A similar idea is implemented in ecology 
for joint species distribution models (JSDMs; Pollock et al. 
2014), where species associations are inferred after account-
ing for the environment. However, JSDMs usually do not 
resolve indirect effects from other species (but see the inver-
sion approach of Harris 2015). The indirect association 
problem is well known in other fields, such as association 
detection in large genomic and cell-signaling datasets. One 
solution is to use Gaussian graphical models (Schäfer and 
Strimmer 2005) or modifications of them, which estimate 

the partial correlations, e.g. between each gene pair after tak-
ing into account the remaining genes (Dobra et  al. 2004, 
Friedman et al. 2008). The approach ensures estimation of 
conditional instead of joint associations and has recently been 
extended to ecological association networks (Harris 2015).

A second challenge is the need for more robust null models. 
Species are not distributed randomly across sites, but rather 
have regional geographic distributions that are constrained 
by climate and dispersal limitations. In the past, most null 
models have been defined by simply resampling the observed 
species  site community matrix O (Gotelli and Ulrich 
2010, Borthagaray et al. 2014). However, this approach fails 
to account for the additional broad-scale constraints, intro-
ducing unrealistic null expectations of spatial independence 
across randomized sites that disregard spatial autocorrelation 
in species’ distributions (Legendre 1993, Lennon 2000). In 
the framework we present here, we suggest that alternative 
null models can be defined to simulate a specific process. By 
incorporating regional structure that is contingent on e.g. 
climate-based species distribution models, we can thus gain 
more confidence that associations are the outcome of species 
interactions rather than shared environmental requirements. 

A third missing idea is the incorporation of network 
theory. Network approaches have become common in the 
study of protein interactions, social structure, etc. (Newman 
2010), but have not been applied widely to non-bipartite 
species association networks. The central idea is that any 
individual association between species can be better under-
stood in the context of the network of associations between 
all other species. For example, species with many associa-
tions may be preferentially linked to those with few associa-
tions, suggesting a scenario where some species act as hubs 
or keystones. Thus, the network of species associations is 
a useful way to visualize the community as well as quan-
tify changes in species and multi-species patterns via node- 
and network-level statistics to answer more sophisticated 
questions about associations. Network statistics at node-
level provide insight into species’ roles. For example, the 
unweighted degree of each species characterizes the num-
ber of its association partners. The ratio between the num-
ber of positive and negative associations per species can 
provide a measure of a species’ role in the network (e.g. as 
an attractive ‘aggregator’, if a species has more positive than 
negative associations, or a repulsive ‘segregator’ of other 
species, if otherwise). Network-level statistics also provide 
insight into the overall structure of species assemblages. For 
instance, modularity gives a measure of the overall struc-
ture of the network, indicating the amount of division of 
the network into clusters of nodes that are densely con-
nected to each other, but sparsely connected to nodes in 
other clusters (Newman 2010, Borthagaray et  al. 2014). 
Higher modularity indicates that groups of species are 
more likely to be mutually associated. Additionally, overall 
non-random numbers of links assigned to each node in the 
network can be tested by comparing the degree distribu-
tion to a binomial distribution, which in the limit of many 
species is equivalent to a chi-square test for deviation from 
a Poisson distribution.

The approach we suggest thus builds on recent attempts 
to infer species associations from occurrence data and 
network theory (Borthagaray et  al. 2014). Here we pro-
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vide a more flexible framework that includes both posi-
tive and negative associations, and has the ability to test 
for deviations from a range of regional-scale null models. 
The framework is useful for systems in which associations 
are possible across any pair of the study species (i.e. not 
bipartite networks such as pollinator–plant interactions, 
Bascompte 2010). We currently implement the frame-
work for symmetric associations (i.e. (/), (0,0) or 
(–,–)). For asymmetric associations like predation (/–) or 
commensalism (/0), see Discussion.

Interpreting associations

Our approach can identify multi-species modules (i.e. non-
random groups) of positively or negatively associated species 
and assess the importance of particular species in shaping 
the modules. If we focus on plants, positive associations, or 

aggregations of species, may be caused by biotic interactions 
such as facilitation between nurse trees and seedlings, nitro-
gen fixation by certain species improving soil fertility for 
other species, or through shared pollinators, seed dispersers, 
or facultative mutualisms with endophytic fungi (Afkhami 
et  al. 2014). Alternatively, positive associations may be 
indicative of shared local environmental requirements or 
effects of stabilizing niche differences (Chesson 2000, Lasky 
et  al. 2014), or reflect historical dispersal dynamics such 
as the expansion from glacial refugia (Svenning and Skov 
2007). Negative associations, or segregation of species, may 
also be driven by biotic interactions through competition,  
or alternatively reflect different local requirements (e.g.  
variation in microclimate or edaphic conditions).

Once we have inferred the patterns of species associations, 
we can proceed to determine which hypothesized under-
lying drivers are most important (Box 1), with the aim of 

Box 1. Examples of possible analyses to explore species associations based on the network. Network-level analyses (left) give information on 
the overall structure of the network. Examples include 1) testing for overall-nonrandom number of links comparing the degree distribution 
to e.g. a binomial distribution, and 2) quantifying modularity, i.e. groups of species more likely to be associated. Node-level analyses (right) 
serve to 1) identify the roles of individual species (e.g. as aggregators or segregators by looking at the proportion of negative and positive 
links per species), 2) quantify the centrality of each species, or 3) test for correlations of node metrics such as network distance and hypoth-
esized drivers such as phylogenetic or functional trait distance. Finally, a hybrid of network and node-level measures can be used for spatial 
analyses (bottom) to test for trends in e.g. mean degree of communities across space and their correlation to climate gradients.
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understanding the principles that cause associations to occur. 
Functional trait predictors may help identify mechanisms. 
For instance, if positive associations reflect complementary 
niches where each species occupies a different niche in rela-
tion to resource use (Bolnick et al. 2011), then phylogenetic 
(Webb et  al. 2002) or functional (Weiher et  al. 2011) dis-
tances should be largest between positively associated species 
(Violle et al. 2011). Likewise, by inferring spatial patterns of 
community-weighted mean associations (Box 1) we can test 
whether associations are influenced by climate gradients, and 
are e.g. more common in warmer areas (Brown et al. 1996, 
Schleuning et  al. 2012), or whether positive associations 
become more prevalent at higher elevations (Callaway et al. 
2002a).

A framework for detecting associations

Drawing on the multiple lines of research described above, 
we here propose a general framework to uncover species 
associations from co-occurrence patterns. The associations 
we identify are those not explained by broad-scale climate 
gradients. The main idea of our approach is to pair broad- 
and local-scale co-occurrence information with the Gaussian 
graphical model approach, spatially explicit regional null 
models (Guisan and Zimmermann 2000, Gotelli and 
Ulrich 2010, Borthagaray et al. 2014) and network theory 
(Newman 2010). Our framework is implemented as the 
‘netassoc’ R package.

We first show how the co-occurrence framework can 
infer a network of species associations by pairing regional 
occurrence data with local-scale assemblage data. Second, we 
perform a simulation analysis demonstrating that the frame-
work has acceptable error rates in realistic use cases. Third, 
we demonstrate a range of network-based analyses that can 
describe associations and test hypothesized mechanisms. 
Lastly, we illustrate the framework with an application to the 
trees of eastern United States using a large dataset of local 
co-occurrences and regional occurrences.

In Box 2 we describe the main data inputs and  
methodological choices for the approach. Briefly, the first 
step is to identify non-random species associations for an 
observed and a null dataset. To do this, we compare the par-
tial correlation coefficients inferred for observed local-scale 
data to those inferred for regional-scale null expectations 
calculated from independent data. We then interpret these 
effect sizes within a network framework.

Network construction

To compute the species association network we need 1) the 
observed co-occurrences, i.e. a set of observed presence– 
absence or abundance data for n species found in a random 
sample of m sites, and 2) the expected co-occurrences for 
the same species and sites based on a null model. The null 
expectation can be for presence or abundance of the spe-
cies. From 1) we generate O, the observed species  site 
community matrix. From 2) we generate N, the expected 
abundance (or presence) patterns at each local site as 
predicted by a chosen regional species distribution model 

3). Both the O and N matrix will have n rows (species) and  
m columns (sites).

We first infer the association strength between species i 
and j as entries Aij in the n  n matrix A. We calculate an 
n  n covariance matrix S for each of O and N. From the 
inverse of this covariance matrix we obtain standard partial 
correlations between species, i.e. as
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Box 2. Concepts and data flow underlying the framework. Each step 
illustrates how the network of non-random species association is 
derived from the observed co-occurrence matrix and the expectation 
based on a chosen null model. See detailed description in main text.
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where M is the n  m input community matrix. Cij rep-
resents the effect of species i on species j after correcting 
for the effects of all other species. It is zero if species i is 
conditionally independent of species j. Equation 1 repre-
sents the fundamental mathematical approach taken when 
constructing Gaussian graphical models (Schäfer and 
Strimmer 2005) for inferring linear associations between 
random variables.

We calculate C(O) as well as for K  1 resamples of N, 
C(Ñ). This distribution simply simulates a weighted lottery 
model of community assembly where species enter a com-
munity based only on their overall abundance in the regional 
pool (i.e. the probabilities in N). To do so, the resamples 
preserve the total number of individuals within each site, 
weighting the sampling by the expected abundance of each 
species based on the original N matrix.

We then determine if the observed association between 
each species pair is positive or negative by comparing the 
observed co-occurrence score to the distribution of expected 
co-occurrences across Ñ. We calculate a standard effect size 
SESij(O,Ñ), i.e. by rescaling by the mean (m) and standard 
deviation (s) of the null distributions:
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Finally, we distinguish between significant and non- 
significant associations. We first calculate a two-tailed p-value 
for species i and j as the number of replicates in which  
the absolute observed association strength is smaller than  
the absolute null association strength divided by the total 
number of replicates. We then correct for multiple compari-
sons by specifying a false discovery rate, a, and performing a 
Benjamini–Hochberg correction (Benjamini and Hochberg 
1995) on each p-value, producing a new set of p-values pij

*. 
The false discovery rate conceptualizes the type I error rate 
by controlling the expected proportion of false positives, i.e. 
the proportion of incorrect rejections of the null hypotheses 
across multiple comparisons.

Together, this process yields a species-by-species adja-
cency matrix A with n rows and n columns (number of 
species):
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This matrix A is treated as the adjacency matrix (showing 
which species are connected to each other) used to define the 
species association network, such that a significantly positive 
or negative association between species i and j is established 
if Aij is nonzero. The network of associations is used for all 
subsequent analyses.

A few important decision points in the framework

While our statistical framework for describing species asso-
ciations is general, the user must choose between multiple 
definitions and parameters specific to the system and taxa 

being studied. For example, one important choice in the 
analysis is the type of null model. The N matrix shows the 
expected abundance or presence/absence at each local site 
for each species. Multiple methods can be used to define 
N. For example, a leave-one-out LOESS model on occur-
rence data can be used to calculate the expected abundance 
at one site from a distance interpolation of the observed 
abundances at all other sites. Such a model indicates the 
expected community produced by a dispersal–environment 
model. Alternatively, MaxEnt or other species distribution 
models can be used to calculate the expected abundance 
based on only broad-scale climate. Other approaches are 
possible, like calculating the expected occurrence from 
stacking species’ regional geographic ranges sourced from 
expert-drawn range maps or from mechanistic regional 
models that predict abundance patterns across space (e.g. 
demographic or trait-based dispersal models; Jongejans 
et al. 2008).

A second set of choices that the user must define in the 
analysis is how to estimate the inverse covariance matrix 
S–1, which can be difficult in practice. Two situations can 
arise: first, the number of species can be much larger than 
the number of sites; second, most sites can contain very 
few species. Both cases can lead to S becoming singu-
lar (i.e. non-invertible) because of very large covariances 
between some species pairs. A range of shrinkage estima-
tors for S–1 have been developed that provide a robust 
approach to resolving this general problem (Hoerl and 
Kennard 1970, Schäfer and Strimmer 2005, Friedman 
et  al. 2008). All the shrinkage estimators increase esti-
mator bias in exchange for reduced mean squared error 
by introducing additional offset parameters that ‘shrink’ 
coefficient estimates and so force the existence of a matrix 
inverse. These offset parameters can be estimated by 
cross-validation approaches. A full survey of these meth-
ods is beyond the scope of this article, but some popular 
options include the James–Stein type shrinkage estima-
tor (Schäfer and Strimmer 2005), the graphical lasso (L1-
regularization; Friedman et al. 2008), or ridge regression 
(L2-regularization; Hoerl and Kennard 1970). We caution 
against using the graphical lasso because it produces sparse 
inverse covariance matrices that can produce singular null 
partial correlation distributions Cij(Ñ), and instead rec-
ommend using the James–Stein estimator because of its 
good performance and low computational cost (Schäfer 
and Strimmer 2005).

Finally, we also recommend log-transforming abundance 
data as f (x,a): x ↦ log(x a)  log(a) for some small num-
ber a, e.g. 10–6. This transformation can improve normality 
of the distribution of abundance data, which can otherwise 
take either zero or very large values.

Testing the framework with a simulation 
analysis

To measure the expected performance of the network frame-
work, we simulated co-occurrence matrices with known 
associations and determined how well network-detected 
associations matched these.



6-EV

model for NPV and PPV. The method generates an ensem-
ble of regression trees and therefore allows for multi-way 
interactions between variables. We calculated the impor-
tance of each variable as the residual sum of squares caused 
by splitting on the variable of interest, averaged over all trees. 
Random forest models were built using the randomForest R 
package (Liaw and Wiener 2002).

Across all parameter combinations, PPV took a mean 
value of 12  26 SD %, while NPV took a mean value of 
87  26 SD % (Supplementary material Appendix 1, Fig. A1). 
That is, the method was better at detecting the absence of 
associations than the presence of associations. A random 
forest model predicting PPV as a function of m, n, f, and 
Z explained 56% of the variation in the data and showed 
that m had the largest impact (14.6) on PPV, followed by 
Z (8.1), with smaller contributions of n (1.7) and f (1.3). 
Partial dependence plots indicated that larger values of each 
parameter led to higher values of PPV. A similar random 
forest model for NPV explained 53% of the variation in the 
data, and showed that m (11.1) and Z (8.7) had the largest 
impacts, with smaller contributions of n (1.5) and f (2.6). 
Partial dependence plots indicated that smaller values of 
each parameter led to higher values of NPV. Additionally, 
datasets with large fractions of zero-abundance records did 
not challenge the model’s ability to infer associations.

Overall, this analysis indicates that the method trades off 
between successfully detecting true associations (high PPV) 
and successfully detecting the absence of false associations 
(high NPV). Better PPV occurs for large datasets, while bet-
ter NPV occurs for small datasets. Increasing the value of 
the false discovery rate a can further control this tradeoff. 
We repeated analyses for a  0.5 (results not shown), which 
approximately doubled PPV and halved NPV in all cases. 
Thus, the method can yield acceptable performance in a 
wide range of realistic use cases.

Empirical test of the framework

After establishing the robustness of the framework through 
the simulations, we can apply it to real datasets and analyze 
the inferred associations. Here we present an illustration of 
the approach using communities from temperate forests in 
North America. In particular, we use the framework to test 
whether 1) there are positive and/or negative associations 
among tree species that cannot be explained either from a 
regional dispersal–environmental model, or from broad-
scale climate gradients; and whether 2) such associations can 
be explained by phylogenetic relatedness, functional trait 
similarity, or environmental gradients. We predict that across 
null models, association networks will have non-random 
structure and high modularity, and that positive (negative) 
associations will be more common among less (more) closely 
related species or in warmer (colder) environments.

Species data

We chose local community data to represent eastern North 
America. We extracted community-level tree species abun-
dance data from the Forest Inventory and Analysis (FIA) 

Consider a scenario involving n species distributed across 
m sites, of which a fraction h are unsuitable. We first gener-
ated an n  m expected species-by-site matrix N, all of whose 
abundance entries were independently and identically distrib-
uted according to a hurdle model, such that Nij was zero with 
probability h and Poisson-distributed (mean l) with prob-
ability 1 – h. If any of the marginal sums of N were zero (i.e. 
a site with no species or a species with no sites; problematic 
only for small n and m), we re-generated N until all marginal 
sums were non-zero. We then independently generated an n 
 m observed matrix O via the same hurdle process.

As a next step, we assumed that there were Z associations 
in the ‘true’ association network. We chose the Z associations 
by generating a random graph with n vertices and Z edges 
(Erdős and Rényi 1959), with weight wz (z e {1,2,...,Z}) set 
to either 1 or –1 with equal probability. To model this, we 
iterated over all associations z; for each pair of species iz and 
jz for which a true association exists, we chose a random frac-
tion f of sites {mz}; at each of these sites we either increased 
the abundance for both species (when wz  0) or increased 
for one species and decreased for the other (when wz  0) 
by a factor s proportional to the mean abundance of both 
species at these sites:

O O O O
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� (4)

This process effectively increased the covariance between  
species when the species were positively associated and 
decreased it when the species were negatively associated, 
with the parameters h and s controlling the strength of the 
association. We used h  0.2 and s  0.2 in this analysis.

Next, we applied our network framework using the matri-
ces for all possible parameter combinations of n  10, 100; 
m  10, 100, 1000, f  0, 0.5, and Z  10, 50, 100 (note 
that some combinations were not possible, e.g. when n  10, 
we cannot simulate values of Z  45 because they would 
exceed the number of links in a fully connected network). 
We used a James–Stein type shrinkage estimator (Schäfer 
and Strimmer 2005) with significant associations inferred 
at the a  0.05 level. We set the number of null replicates 
to 1000 and repeated the entire analysis for each parameter 
combination 10 times.

In order to calculate error rates for our method, we  
compared the inferred networks’ structure to the true  
network’s structure. We counted a true positive association if 
it was detected for the correct pair of species and had the cor-
rect sign; as a true negative if it was not detected for a pair of 
species for which an association did not exist. A false positive 
association was counted if it was detected but was either the 
incorrect sign or the pair of species did not have a true asso-
ciation. Similarly, a false negative was counted if it was not 
detected but the pair of species did have a true association. 
These counts allowed us to calculate the positive predictive 
value (PPV; true positives divided by true positives plus false 
positives) and the negative predictive value (NPV; true nega-
tives divided by true negatives plus false negatives) as sum-
mary statistics.

To determine the sensitivity of the method to differ-
ent parameters, we constructed a random forest regression 
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database (Gray et  al. 2012) (see Supplementary material 
Appendix A1 for query details). We selected 5138 0.07 
ha plots from the eastern USA (east of the 100°W merid-
ian), and subsampled to a maximum of three plots for each  
10 000 km2 to reduce spatial sampling biases. Each plot 
consists of four 7.3 m radius subplots located 36.6 m from 
each other. All plots included were surveyed in the field 
between 2004 and 2008, used standard sampling proto-
cols, and were marked as natural stands without evidence 
of artificial regeneration or human disturbance. If a plot 
was surveyed more than once in the time period chosen, 
we only included the newest survey. We excluded FIA 
taxa that were not identified to the species level. A total 
of m  1009 plots out of the 5138 plots and n  137 tree 
species were included in the analyses.

Point occurrence data for the null models came from 
BIEN, the Botanical Information and Ecology Network 
(Enquist et al. 2009,  http://bien.nceas.ucsb.edu/bien/ ) 
for each of the 137 tree species.

Alternative species distribution models

We computed results based on three definitions of the null 
model. First, we used the commonly used random-swap 
algorithm, where the local community matrix O is random-
ized to create the null matrix N (Connor and Simberloff 
1979, Gotelli and Ulrich 2010), keeping row and column 
sums fixed (i.e. total species and site abundances). Second, 
we used a leave-one-out LOESS regression of plot abun-
dances with a span parameter of 0.2 (mirroring ter Steege 
et al. 2013) to compute the expected abundance at each 
plot from its spatial position and those of the remaining 
5137 plots in the full FIA dataset. Third, we also used spe-
cies distribution models created with the algorithm MaxEnt 
(Phillips and Dudík 2008) and based on the BIEN point 
occurrence data to estimate the climatic potential range of 
each species. As a test case, we used 19 bioclimatic layers 
representing ‘current’ climate (average 1950–2000 condi-
tions) as model predictors, extracted from WorldClim 1.4 
at 30-arc second resolution (Hijmans et  al. 2005). Each 
model was fit using default parameters to both North and 
South America to capture the climatic range of the full 
New World distribution of each species. We converted the 
model suitability scores to expected abundance values by 
standardizing them so that the summed suitability scores 
for each species equaled the total number of individuals 
across all plots. This procedure assumes a linear relation-
ship between suitability and abundance.

We used 1000 resamples Ñ of the expected species  site 
matrix N. As in the simulation analysis, we used a James–
Stein shrinkage estimator for the inverse covariance matrix, 
and specified an overall false discovery rate of a  0.05 to 
exclude non-significant associations. Modules in the net-
work were inferred using a standard fast-greedy algorithm 
(Clauset et al. 2004).

Potential predictors of species’ associations

We obtained data on phylogenetic relatedness between spe-
cies and functional trait values to illustrate how the network 
statistics can be used to test hypotheses of drivers of species 
associations.

We calculated phylogenetic distances from a phylogeny 
for all the trees of eastern USA using Phylocom’s ‘phylomatic’ 
tool (Webb et  al. 2008). We used the R20120829 back-
bone tree, with branch lengths adjusted by fossil constraints 
(Gastauer and Meira-Neto 2013). We then computed the 
distance between each pair of species.

We also obtained measurements of four traits thought 
to underlie major axes of ecological strategy variation 
(Westoby et al. 2002): maximum height (m), specific leaf 
area (SLA; cm2 g–1), seed mass (g) and wood density (g 
cm–3). Functional trait data were extracted from the BIEN 
database. There was good coverage for trait data: 99% 
for height, 72% for SLA, 93% for seed mass, and 81% 
for wood density. We log10-transformed each trait value 
to reduce skewness, then rescaled all values by subtract-
ing means and dividing by standard deviations. We then  
computed trait differences between all pairs of species.

We used linear regression to determine whether the links 
between each species pair (link strength if adjacent; 0 if not 
adjacent) was predicted by pairwise phylogenetic or trait 
distance between the species pair. We did not correct for 
non-independence of predictor distances (e.g. Mantel-type 
test). This approach should lead to an increased rate of falsely 
rejecting the null hypothesis, meaning that failing to reject 
the null hypothesis is more likely to reflect a true absence of 
relationship.

Network structure of trees of eastern USA

The species association network based on the random-swap 
algorithm showed a non-random structure (chi-square test 
for Poisson degree distribution, p  10–45), identifying 
many positive and negative associations (Table 1). On the 
other hand, the overall structure of networks based on the 

Table 1. Descriptive statistics for association networks constructed from the same dataset using different null models. We report an  
overall p-value for deviations from a Poisson distribution of edges, and for the subsets of the network for positive or negative associations,  
the mean  standard deviation of degree, as well as the number of non-singleton modules (i.e. with more than one member) detected in the 
network.

Degree Positive modules Negative modules

Regional model p-value Positive Negative Number Mean size Number Mean size

Swap 2.44  10246 20.31  10.81 56.26  15.42 12 11.4 5 27.4
LOESS 0.230 0.09  0.31 0  0 5 2.2 0 NA
MaxEnt 0.565 0.82  0.89 0  0 24 3.2 0 NA
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Figure 1. Empirical association network for North American trees. The network was constructed using the MaxEnt regional null model and 
a shrinkage inverse covariance estimator using 1000 null replicates and a false discovery rate of a  0.05. Gray envelopes indicate distinct 
modules. Positive associations are shown as blue lines; negative would be shown as red lines but none were found.

two regional null models – the LOESS dispersal–environ-
ment model, and the MaxEnt climate model – was not dif-
ferent from random. This result indicates that the overall 
distribution of local associations between trees in North 
America can mainly be explained by broad-scale drivers. 
Looking at the individual associations, we only found 
a few positive interactions in both of these networks. 
Interestingly, all five modules of 2–3 associations identi-
fied using the LOESS regional model also appeared when 
applying the MaxEnt model, although sometimes with an 
additional species in the module (Supplementary material 
Appendix 1, Fig. A2). We found additional associations 
deviating from the MaxEnt regional model, and modules 
were larger in general (Table 1, Fig. 1). In the random-
swap network most species were inferred to be ‘segrega-
tors’, while in the MaxEnt and LOESS network most 

species were inferred to be ‘aggregators’ (Supplementary 
material Appendix 1, Fig. A3).

What predicts species’ associations?

The positive and negative associations we found were not 
predicted by phylogenetic or trait distances (Supplementary 
material Appendix 1, Fig. A4) regardless of null model. The 
network structure explained by phylogeny in any network 
was no more than 0.05%, and the variation explained by 
all four traits together was no more than 0.12% in any 
network.

We did find weak spatial gradients in abundance-
weighted mean values of degree for the species compris-
ing each community (Supplementary material Appendix 
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associations. For instance, Carya aquatica and Taxodium 
distichum are both species of Coastal Plain, strongly asso-
ciated with large river backswamps that are periodically 
flooded. A similar habitat is preferred by Nyssa aquatica 
and Planera aquatica, although this species pair is found 
more up-stream than the first ones, in areas where flooding 
is less prolonged. Quercus palustris, Q. bicolor and Carya 
laciniosa also prefer swamp habitats, though more from 
interior flatlands on more calcareous soils. Habitat pref-
erence does not seem to explain the association between 
Carya pallida and Quercus michauxii, which prefer dry/
sandy and swampy soils, respectively. These two species 
rarely occur together, but both are largely confined to the 
southeastern Coastal Plain and lower Piedmont regions. 
This geographic signal could instead be driven by dispersal 
limitation. A few boreal modules such as the one around 
Abies balsamea are identified with the MaxEnt regional 
model but disappear in the LOESS model. These mod-
ules may represent local mosaics of boreal and temperate 
stands at the boreal-temperate transition zone, reflecting 
local environmental conditions and/or priority effects 
(Pastor and Mladenoff 1992).

Given that the MaxEnt model only covers environmental 
constraints, species might be simulated to co-occur that have 
similar climatic requirements but are allopatric. In such a 
case we would expect more negatively associated species in 
the network derived from the MaxEnt null model. Instead, 
the modularity of networks based on the MaxEnt models 
was much higher than that of LOESS-based networks, and 
in neither case did we find negative associations. The fact 
that we only identify positively associated groups of species 
unexplained by broad-scale climate conditions is consis-
tent with the results of the simulation study of Araújo and 
Rozenfeld (2014), who found that the effect of positive (but 
not negative) dependencies between species scaled up to 
biogeographical scales and should be accounted for in range 
models under climate change.

One implication of our results – in particular the larger 
amount of positive associations deviating from the climate-
only model – is that we cannot rely solely on stacked spe-
cies distribution models (SDMs) (sensu Guisan and Rahbek 
2011, Calabrese et al. 2014) to predict the composition of 
local communities, but need to take species associations into 
account (Araújo and Rozenfeld 2014) – whether driven by 
biotic interactions, dispersal, or local environmental filter-
ing. In cases where e.g. local environmental or dispersal data 
are available, these can be integrated to filter broad-scale  
predictions and improve the performance of SDMs for  
communities (Boulangeat et al. 2012).

We note that even low error rates can translate into high 
absolute numbers of incorrect associations for datasets with 
large species numbers. Given that 100 species have 4950 
potential pairwise interactions, our simulation error rates 
mean that, on average, approximately 25 links will be inferred 
that do not actually exist. These type 2 error rates are very 
high for small datasets, but settle to near zero for datasets 
with at least 100 sites, with performance further increasing 
when species co-occurrence patterns have high association 
weights. Thus, the algorithm does not often miss real asso-
ciations, but even then, these type 2 error rates translate into 
approximately 500 real links that are missed. These rates and  

1, Fig. A5). For each of the random-swap and MaxEnt  
networks, mean degree was negatively correlated with  
mean annual temperature but not with mean annual precipi-
tation (multiple regression; both p  0.002, both R2  0.06). 
The LOESS network was not correlated with either mean 
annual temperature or precipitation (p  0.26).

Can we infer non-random species 
associations?

Our simulation analysis showed that the co-occurrence 
framework is indeed able to identify known associations 
within the parameter regimes we explored. However, there 
is a trade-off, where large datasets lead to better success in 
detecting true associations, and smaller datasets are bet-
ter are identifying the absence of false associations. When 
including explicit regional null models, the framework is 
able to pinpoint which species are associated after broad-
scale drivers have been accounted for. This not only allows 
testing for multiple regional models. Another advantage is 
that spatial autocorrelation in species distributions can be 
taken into consideration. Indeed, when looking at the results 
from our case study, it is apparent that the random-swap 
algorithm identifies spurious positive and negative asso-
ciations that stem from ignoring the spatial dependence of  
species occurrences. This important implication shows that 
the null model from a hypothesized process such as disper-
sal or broad-scale climate patterns gives better control of the 
type of associations identified.

Another challenge addressed by the framework is that 
of indirect effects from multiple species on pairwise asso-
ciations. The result is that when applying the framework 
to tree communities of eastern North America, we only 
found a small number of positive associations deviating 
from either the LOESS or the MaxEnt based regional 
models after correcting for indirect effects (Fig. 1). 
Ecologically, this may reflect that tree species distribu-
tions are largely controlled by environment and dispersal, 
with little importance of interspecific interactions, even 
if the latter matter for local abundances. The associations 
we do identify are those deviating from the broad-scale 
expectations. The LOESS model can be interpreted as a 
dispersal and environment model, since it simply inter-
polates abundance as a function of distance and implic-
itly includes environmental conditions that are spatially 
autocorrelated. Alternatively, the MaxEnt model com-
putes the expected co-occurrence as a function of broad-
scale climate variables, ignoring dispersal constraints, and 
instead representing the potential climate range of each 
species. It is thus not entirely surprising that the asso-
ciations identified with the dispersal–environment model 
are all a subset of those identified with the climate-only 
model. Contrary to our predictions, functional traits, 
phylogenetic relatedness and environmental gradients did 
not correlate with the associations found across the net-
works. However, natural history, successional dynamics 
and missed environmental drivers could explain at least 
some of the associations identified. Indeed, local habitat 
requirements not fully captured by the broad scale envi-
ronmental gradients tested here seem to explain several 
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models (Blick and Burns 2009), or when looking for pat-
terns across time in the paleo-record (Blois et  al. 2014). 
Some of the disparate results seen across studies might be 
the unintended outcome of methodological differences. We 
suggest that sensitivity analyses and consensus approaches 
should be used to achieve robust results. Importantly, partial 
correlations should be widely implemented, as well as taking 
into account spatial autocorrelation as part of the null model 
to avoid identifying non-existent interactions.

The framework as currently implemented only accounts for 
symmetric associations, i.e. those representing (/), (0,0) or 
(–,–) interactions. This limitation is imposed because the matrix 
A is derived from C, which is derived from S–1, which is sym-
metric. The coefficients in C could instead be calculated using 
other approaches that allow for non-symmetric outcomes, and 
so also capture effects like predation (/–) and commensal-
ism (/0). The network framework allows for such directed 
linkages, and the R package does allow arbitrary user-specified 
functions to be used for calculating C. However, most associa-
tion metrics are symmetric (cf. Janson and Vegelius 1981) and 
the few that are not (e.g. Somers’ D (Somers 1962), Goodman 
and Kruskal’s lambda (Goodman and Kruskal 1972)) cannot 
be used with abundance data, do not take both positive and 
negative values, and do not account for indirect associations. 
Other methods such as the excess co-occurrence approach of 
Araújo and Rozenfeld (2014), the Markov network approach 
suggested by Harris (2015), and the directed partial correla-
tion coefficients proposed for microarray studies (Yuan et al. 
2011) are still experimental. Developing association metrics 
that capture all possible ecological integration types should be 
a priority.

For cases in which many strong associations are identified, 
the network framework could potentially be extended to pro-
vide predictions of local community composition, which in 
turn can be tested in new communities. For instance, with 
information on the identity of only one species in a commu-
nity, a ‘network-crawling’ approach could be used to predict 
the identity of the remaining species by allowing species that 
are close to the one known species in the network more likely 
to be predicted in the local community (or less likely for spe-
cies negatively associated). Such an extension would provide 
transparent and powerful tests of the predictive ability of asso-
ciation networks derived either solely from occurrence data, or 
combined with experimental or field-based interaction data.

More sophisticated analyses could be applied to our 
framework to provide a more thorough test of the drivers of 
associations observed. Indeed, a recent study found modular-
ity analyses useful to identify biological attributes driving the 
connection of modules of co-occurring species (Borthagaray 
et al. 2014). Such additional analyses can be readily applied 
with our framework, potentially combined with other meth-
ods to identify network modules (Leger et al. 2015) to e.g. 
investigate the relationship of traits and phylogenetic rela-
tionships for species within each module, and thus explore 
the definitions of the scale of study.

Looking forward

Mechanistic understandings of the drivers of species  
distributions across scales are needed to better predict the 

uncertainties are similar to other association-inference 
approaches (Morales-Castilla et  al. 2015) and suggest that 
these frameworks are most useful for reducing the space of 
possible associations to significantly more manageable num-
bers (cf. Fig. 2 in Morales-Castilla et al. 2015).

Inferring drivers of associations — a complex 
challenge

In our example with North American tree communities, the 
associations we identified can best be explained by ecological 
(and possibly geographic) groupings. It is thus not surpris-
ing that they could not be predicted by markers like func-
tional trait similarity and phylogenetic distance. Similarly, 
we only found a weak negative correlation between com-
munity mean degree and mean annual temperature for the 
associations identified with the MaxEnt null model, possibly 
reflecting the geographic signal of boreal communities. The 
application still shows how network metrics can be used to 
test for drivers of associations, although in this particular 
case, more direct measures such as species’ flooding tolerance 
from Ellenberg values would have been more useful.

Still, we can imagine several issues that could pose 
obstacles to the prediction of associations. One issue is that 
multiple competing processes can be at play. Competition 
and facilitation may cancel each other out (Callaway and 
Pennings 2000). Species associations may also vary across 
environmental gradients (Callaway et al. 2002a, Pottier et al. 
2013) or across temporal scales (Blois et al. 2014, Martorell 
and Freckleton 2014), such that the scale of input data used 
would be critical. Even in networks of biotic interactions 
between plants and pollinators, pairwise associations do not 
always correlate with hypothesized drivers, even when cor-
relations are found with metrics of overall network structure 
(Olito and Fox 2015). We therefore expect that disentan-
gling the processes driving patterns of co-occurrence will 
remain an ongoing challenge.

Extensions of the network framework

The increased availability of regional species occurrence 
and local-scale co-occurrence data across large extents has 
been a strong driver behind recent attempts to disentangle 
the processes promoting species’ associations through biotic 
interactions, dispersal limitations and environmental filter-
ing (Blick and Burns 2009, Ulrich et al. 2012, Blois et al. 
2014). We have presented a flexible framework to infer 
species positive and negative associations that deviate from 
expected broad-scale processes, and illustrated how network 
statistics can be used to test hypothesized drivers of associa-
tions. The approach can be readily applied to other datasets 
and systems for any other type of potential species associa-
tions across trophic levels.

There is an ongoing debate on the directionality of 
associations, with some studies finding more positive than 
negative associations (Blick and Burns 2009 and references 
therein, Blois et al. 2014), while others (including a meta-
analysis) have found the opposite (Azaele et al. 2010, Gotelli 
and Ulrich 2010). Inconsistent associations appear to be 
the norm rather than the exception in the literature, chang-
ing when using species-based rather than individual-based 
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consequences of rapid global change. The general framework 
we propose here provides a novel tool to infer local-scale 
associations that can affect species’ distributions. We have 
presented a flexible framework linking co-occurrence and 
null-models to network theory for inferring species associa-
tions that is easily applicable to other systems and datasets. 
This approach can resolve challenges related to assumptions 
of spatial independence in species’ distributions and indi-
rect effects of multiple species on associations. Variations 
in the implementation of our approach can be used to test 
for association patterns that do not follow the expectation 
from broad-scale climate, dispersal or other hypothesized 
processes. With network metrics and analyses we can test 
for drivers of the patterns, and the approach can be poten-
tially extended to predictions of local community assembly. 
Combined with field experiments and other methods, our 
framework can be a powerful tool to move beyond extant 
concepts in the analysis of co-occurrence data to improve 
assembly predictions across scales and help merge commu-
nity ecology and biogeography.
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