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Summary

� Variation in leaf venation network architecture may reflect trade-offs among multiple func-

tions including efficiency, resilience, support, cost, and resistance to drought and herbivory.

However, our knowledge about architecture-function trade-offs is mostly based on studies

examining a small number of functional axes, so we still lack a more integrative picture of mul-

tidimensional trade-offs.
� Here, we measured architecture and functional traits on 122 ferns and angiosperms species

to describe how trade-offs vary across phylogenetic groups and vein spatial scales (small,

medium, and large vein width) and determine whether architecture traits at each scale have

independent or integrated effects on each function.
� We found that generalized architecture-function trade-offs are weak. Architecture strongly

predicts leaf support and damage resistance axes but weakly predicts efficiency and resilience

axes. Architecture traits at different spatial scales contribute to different functional axes,

allowing plants to independently modulate different functions by varying network properties

at each scale.
� This independence of vein architecture traits within and across spatial scales may enable

evolution of multiple alternative leaf network designs with similar functioning.

Introduction

Substantial variation in leaf venation network architecture exists
across plant phylogeny (Fig. 1). Some species have a single vein,
while others exhibit complex networks with vein density exceed-
ing 25 mmmm�2 (Boyce et al., 2009; Brodribb et al., 2010).
Some networks are strictly branching, while others comprise
thousands of loops with variable shapes. Variation in network
architecture also occurs across vein spatial scales (vein orders or
sizes) within a single leaf. For example, in many angiosperms,
minor veins form loops, whereas major veins only branch (Blon-
der et al., 2020). While it is still unclear what evolutionary pro-
cesses have created such a variety of venation networks (Fujita &
Mochizuki, 2006), one leading hypothesis is that different net-
works may reflect selection to optimize different functions
(Roth-Nebelsick et al., 2001; Sack & Scoffoni, 2013; Blonder
et al., 2020).

Venation networks may contribute to at least six functional
axes (hypotheses expanded in Tables 1, 2): (1) damage resistance
to drought (leaf ability to avoid water flow interruption due to
xylem conduit implosion or embolism), (2) damage resistance
to herbivory (leaf ability to avoid water flow disruption caused by
herbivores cutting veins), (3) damage resilience to drought and
herbivory (leaf capacity to maintain flow after damages have
occurred), (4) flow efficiency (how efficiently water flows through
the leaf), and (5) mechanical support (leaf capacity to remain
upright in space), which must be traded-off against (6) the leaf
construction cost. Due to biophysical and physiological con-
straints, it might be impossible to construct a network that simul-
taneously optimizes all functions (Blonder et al., 2018, 2020).
For instance, it might be difficult to simultaneously achieve high
efficiency (via branching networks) and high resilience (via loop-
ing networks), as those functions depend on opposing architec-
tural features (Roth-Nebelsick et al., 2001; Ronellenfitsch &
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Katifori, 2019). Depending on the selective forces under which
plants have evolved, they may have developed different network
architectures as compromises among multiple functions.

While it is known that venation architecture traits (Table 3)
vary across spatial scales (Blonder et al., 2020), how features at
each scale influence different functions remains only partially
understood. Some studies propose a functional independence
(aka ‘labor sharing’ Kawai & Okada, 2016, 2018) across spatial
scales, where features at different vein orders contribute to differ-
ent functions (Roth-Nebelsick et al., 2001; Ueno et al., 2006;
Sack & Scoffoni, 2013). That is, architecture traits at different
vein sizes are uncorrelated, allowing plants to independently reg-
ulate different functions at each scale. For example, minor vein
density may regulate flow efficiency, while major vein density
may influence mechanical properties (Sack & Scoffoni, 2013;
Kawai & Okada, 2016). By contrast, there could be an integra-
tion across vein orders, where venation traits at different spatial

scales are coselected and coordinated to support overall leaf func-
tioning, for example via consistent vein tapering ratios (Price
et al., 2007; Savage et al., 2010; Ronellenfitsch et al., 2015).
Those scenarios are not mutually exclusive, and it is possible that
the degree of integration vs independence among architecture
traits vary across species. Most studies examining those trade-offs
were limited to a few species, so we still do not know how the
architecture-function space is partitioned among phylogenetically
distinct taxa with a wide range of network architectures.

Features not related to the venation architecture can also influ-
ence leaf functions and may covary, cancel out, or reinforce the
architecture-function trade-offs (Table 2). For instance, outside-
xylem conductance can be equally or even more important than
the vein-mediated transport to determine flow efficiency (Scof-
foni et al., 2023). Similarly, chemical defenses may contribute
more to herbivory resistance (Agrawal & Fishbein, 2006), than
the mechanical defenses provided by the lignified network

Fig. 1 Examples of variation in leaf venation
network architecture across plant clades: (a)
Fern:Onoclea sensibilis L. (Onocleaceae); (b)
Basal angiosperm: Chimonanthus nitensOliv.
(Calycanthaceae); (c) Monocot: Sagittaria
latifoliaWilld. (Alismataceae); (d) Basal eudicot:
Buxus harlandii Hance (Buxaceae); (e) Rosid:
Aextoxicon punctatum Ruiz & Pav.
(Aextoxicaceae); and (f) Asterid: Escallonia
herreraeMattf. (Escalloniaceae).
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(Niklas, 1999; Kitajima & Poorter, 2010). Quantifying the con-
tribution of network architecture features to different leaf func-
tions is therefore essential to understand the constraints that
influenced the evolution of diverse leaf networks.

Due to the difficulty in extracting whole-leaf venation net-
works (but see Xu et al., 2021) and in obtaining trait datasets
describing all functional axes, many hypotheses relating leaf
architecture and function (Fig. 2) remain to be tested. Previous
studies have shown how network architecture features maximize

a single (e.g. Brodribb et al., 2007, 2016; Sack et al., 2008; Kati-
fori et al., 2010; McKown et al., 2010) or a few functional axes
(Walls, 2011; Li et al., 2015; Kawai & Okada, 2016, 2018,
2020; Blonder et al., 2018; Hua et al., 2020; Xiong & Flexas,
2022), but we still lack a more integrative picture of multidimen-
sional trade-offs. Rather than maximizing individual functions,
venation networks might be constructed to optimize overall leaf
functioning. This perspective is consistent with the evolutionary
hypothesis of ‘multiple alternative designs’ in which many phe-
notypes can achieve similar functioning (Wainwright, 2005;
Marks & Lechowicz, 2006).

Distinguishing between these scenarios can only be assessed by
simultaneously investigating multiple functional and architecture
axes. In a previous study (Blonder et al., 2020), we evaluated
multifunctional trade-offs across vein spatial scales and found
surprisingly weak relationships between venation architecture
and leaf functions. However, it remained unclear if those weak
trade-offs were caused by a stronger functional role of nonvena-
tion traits or by methodological limitations. The prior study had
restricted phylogenetic coverage (only 47 families, all angios-
perms, all sampled from one region), incomplete networks miss-
ing major veins (networks were extracted from leaf subsections
up to 2 cm2), and insufficient trait dataset to describe all
functional axes.

Here, we measured and imputed (16.8% of imputed values)
leaf architecture and functional traits (Table 1) from a phylogen-
etically diverse set of 122 species (Supporting Information
Fig. S1; Table S1). Our functional dataset included 13 traits
(Table 2) and provided a more complete description of all func-
tional axes. Our venation dataset comprised over 5 million vein
segments between 10 and 500 μm of diameter, mostly (95%)
extracted from whole leaves. This dataset supported an accurate
representation of how key vein features (Blonder et al., 2018,
2020) – vein density, vein ramification (branching vs looping),
and loop geometry (circular vs elongated) (Table 3) – vary at dif-
ferent spatial scales within a leaf and across species. By combining
those two datasets, we were able to (1) describe leaf
architecture-function trade-offs, and how they vary across plant
clades and vein spatial scales; (2) provide an upper bound esti-
mate of the contribution of venation architecture to each func-
tional axis; (3) identify which venation architecture traits at
which scale (small, medium, and large vein width) predict each
leaf function; and (4) determine how venation architecture traits
across spatial scales interact (via independence and/or integra-
tion) to regulate leaf function. Several hypotheses have been pre-
viously advanced in the literature for the relationships within and
among architecture and functional traits (Table 2). Our
dataset allowed a robust assessment of those specific hypotheses
(Table 2; Fig. 2) that have previously been tested with smaller
datasets or not at all.

Materials and Methods

Below, we provide a brief description of how architecture and
functional traits were measured. For a detailed description, see
Methods S1.

Table 1 List of abbreviations and their meaning.

Abbreviation Meaning

ΔKleaflamina
Change in leaf hydraulic conductance 48 h after the leaf
lamina has been severed

ΔKleafmean
Average change in leaf hydraulic conductance in response
to a simulated herbivory treatment

ΔKleafmidrib
Change in leaf hydraulic conductance 48 h after the leaf
midrib has been severed

b Xylem cell wall maximum diameter
BHPMF Bayesian hierarchical probabilistic matrix factorization
EFM Evaporative flux method
ER Loop elongation ratio
ERlarge Loop elongation ratio in large vein sizes
ERmedium Loop elongation ratio in medium vein sizes
ERsmall Loop elongation ratio in small vein sizes
GBM Gradient boosting machine model
ISI Xylem conduit implosion safety index
Kleafmax

Maximum leaf hydraulic conductance
LMA Leaf mass per area
MST Minimum spanning tree ratio
MSTlarge Minimum spanning tree ratio in large vein sizes
MSTmedium Minimum spanning tree ratio in medium vein sizes
MSTsmall Minimum spanning tree ratio in small vein sizes
P50 Leaf water potential inducing 50% loss of leaf hydraulic

conductance
P88 Leaf water potential inducing 88% loss of leaf hydraulic

conductance
PC1 First principal component
PC2 Second principal component
PC3 Third principal component
PCA Principal component analysis
Phe Leaf total phenol content
rmin Each value of vein width
RMSE Root-mean-square error
SHAP Shapley additive explanations values
SWP Specific work to punch a leaf
SWPlamina Specific work to punch leaf lamina
SWPmidrib Specific work to punch leaf midrib
SWS Specific work to shear a leaf
SWSlamina Specific work to shear leaf lamina
SWSmidrib Specific work to shear leaf midrib
tBe Double intervessel cell wall thickness
UCBG University of California Botanical Garden at Berkeley
UTM Universal testing machine
VD Vein density
VDlarge Vein density in large vein sizes
VDmedium Vein density in medium vein sizes
VDsmall Vein density in small vein sizes
ε Leaf flexural modulus of elasticity
εlamina Leaf flexural modulus of elasticity for the leaf lamina
εwhole Leaf flexural modulus of elasticity for the whole leaf
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Species sampling

We sampled 122 species (Table S1) from the living collections of
the University of California Botanical Garden at Berkeley
(37.87°N, 122.23°W; CA, USA). Our samples included woody
and herbaceous species, with origins from all continents except
Antarctica, but growing under similar conditions as in a ‘com-
mon garden’ experiment (Perez et al., 2019). For each species,
branches (> 1 m long, woody species) or whole plants (herbac-
eous species) were sampled from 1 to 5 mature individuals, re-cut
under water, re-hydrated overnight, and then used for the mea-
surement of functional (Table 2) and architecture traits (Table 3).
As most measurements were destructive, different leaves were
used for each trait. This sampling approach where the number of
replicates within species is reduced to achieve a broader phyloge-
netic coverage allowed us to investigate trait variation at higher
taxonomic levels (clades and families), but had less power at
lower levels (genus and species).

Leaf functional traits

Flow efficiency was quantified as the maximum leaf hydraulic con-
ductance (K leafmax

, mmol m�2 s�1 MPa�1). K leafmax
was measured

on 4–10 leaves per species using the evaporative flux method
(EFM, Sack & Scoffoni, 2012) with a pressure-drop flow meter
(Melcher et al., 2012). EFM more closely approximates the tran-
spiration flow of an in vivo leaf (Sack & Scoffoni, 2012), as it
involves evaporating water out of the lamina while determining
the flow rate into the petiole with a flow meter (model PX26-
001GV; Omega Engineering, Norwalk, CT, USA) and the water
potential drop across the leaf with a pressure chamber (model
1505D; PMS, Albany, OR, USA).

Damage resistance to drought was measured as the leaf water
potentials inducing 50% (P50, MPa) and 88% (P88, MPa) loss of
K leafmax

using the EFM (Sack & Scoffoni, 2012; Scoffoni
et al., 2012). To describe xylem resistance to implosion, we also
measured xylem conduits’ implosion safety index (ISI, dimen-
sionless) from 6 to 8 leaf cross-sectional anatomical images per
species, including images of the petiole, major and minor veins
(Matos et al., 2024). For each image, xylem cell wall maximum
diameter (b) and double intervessel cell wall thickness (t) were
manually measured on all or, at most, 10 adjacent xylem conduits
using the software IMAGEJ (https://imagej.nih.gov/). ISI was cal-
culated as t/b (Hacke et al., 2001; Blackman et al., 2010).

Damage resistance to herbivory was quantified as the specific work
to punch (SWP, kJ m�2 m�1) and to shear (SWS, J m�2) a leaf
(3–4 leaves per species) using a universal testing machine (UTM,
Test stand ES30 and force gauge series M5; Mark-10, Copiague,
NY, USA). Punching tests involved forcing a rod of known
cross-sectional area through the leaf midrib or lamina, whereas
shearing tests involved using a single blade to make a transverse cut
across the leaf midrib and lamina (Read et al., 2005; Onoda
et al., 2011). We also quantified the total phenol content (Phe,
g g�1) in dried leaves using the Folin–Ciocalteu assay (Ainsworth
& Gillespie, 2007). Phe can be used as a partial proxy of chemical
defense against herbivores (Matsuki, 1996).T
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Damage resilience was quantified as the average change in leaf
hydraulic conductance (ΔK leafmean , %) after the lamina or the
midrib(s) were cut at one-third distance from the leaf base (Dela-
ney & Higley, 2006; Sack et al., 2008). Severing treatments sub-
jected leaves to both physical/herbivory (because of the cut) and
hydraulic/drought (because air could enter through the cut con-
duits) damages (Sack et al., 2008; Peschiutta et al., 2016).
Forty-eight hours after treatment, we excised the damaged leaves
and measured Kleaf using the EFM. ΔK leaf was calculated sepa-
rately for the midrib and lamina, that is ΔK leaf = [(ΔK leafmidrib

or
ΔK leaf lamina

× 100)/K leafmax
] – 100, and then averaged for each

sample to obtain ΔK leafmean
. ΔK leafmean

< 0 indicates lower resili-
ence (i.e. Kleaf declines after damage), while ΔK leafmean

≥ 0 indi-
cates higher resilience.

Mechanical support was described by the leaf flexural modulus
of elasticity (ε, MN m�2; Read et al., 2005), measured on 3–4
leaves per species using the UTM. For each leaf, 3-point bending
tests were conducted twice, to obtain ε for the whole leaf (εwhole),
and leaf lamina (εlamina). Leaves were placed in the UTM with
their longitudinal axis parallel to the bending fixture.

Construction cost was described as the leaf mass per area (LMA,
g m�2), measured in 3–5 mature leaves per species. Leaves were
first scanned to obtain leaf area, and then oven-dried at 50°C for
48 h to determine their dry mass (B2-Series; VWR, Radnor, PA,
USA). LMA was then calculated as leaf dry mass/leaf area (Pérez-
Harguindeguy et al., 2016).

ISI, LMA, SWPlamina and K leafmax
were measured in all 122

species. For various reasons (Methods S1), missing data occurred
for the other functional traits, with variable percentages of miss-
ing values ranging from 1% (Phe) to 74% (P50 and P88). There-
fore, caution must be used when interpreting the results for those
last two traits.

Leaf venation architecture traits

To obtain the architecture traits, leaves were pressed flat, dried,
and chemically cleared and stained to highlight veins (Blonder
et al., 2018; Pérez-Harguindeguy et al., 2016). Next, cleared
leaf samples were imaged using a 100-mm macro-objective lens
(Tokina, Huntington Beach, CA, USA) and digital camera
(EOS 6D; Canon, Southend-on-Sea, UK) or a transilluminated
scanner (Epson Perfection V850 Pro, Los Alamitos, CA, US),
producing high-resolution images (47–144 pixels mm�1) of
the whole leaf. This process resolved veins ≥10 μm in dia-
meter. Therefore, all larger veins were accurately imaged in all
species, but in species with minor venation smaller than this
threshold, the architecture traits at smaller spatial scales missed
some veins.

Leaf images were processed using the LEAFVEINCNN software,
v.1.3 and newer (Xu et al., 2021; software and manual available
from doi: 10.5281/zenodo.4007731). LeafVeinCNN relies on an
ensemble of three convolutional neural networks to automatically

Table 3 Leaf venation architecture traits (abbreviation, unit and definition).

Leaf venation architecture traits Definition
High trait value for small
veins

Low trait value for small
veins

Vein density (VD, mmmm�2) Length of all vein segments per unit of leaf area.
Higher VD indicates more veins per unit leaf area

Minimum spanning tree ratio (MST,
dimensionless)

Degree of branching vs looping in the network.
Calculated by computing the length of the
minimum spanning tree connecting all vein
junctions divided by the length of all veins. Higher
MST indicates a more branching (tree-like) network
with fewer loops

Loop elongation ratio (ER, dimensionless) How elongated the loops are. Calculated by fitting
an ellipse to each loop, and dividing the major axis
length by the minor axis length, then taking the
median ratio across all loops and subtracting 1 (for
statistical convenience). Higher ER indicates more
elongated (less circular) loops

The example illustrations show networks with high or low values of each venation architecture traits for the small veins only (yellow lines), while features of
medium (orange) and large (purple) veins remain constant. In reality, variation in architecture traits can occur across all scales (small, medium, and large
veins).
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segment veins and produce a spatial graph representation of the
networks. The program also uses hierarchical loop decomposition
algorithms (Katifori & Magnasco, 2012) to extract multiscale
venation statistics, which describe how venation architecture
traits vary across spatial scales (Blonder et al., 2020), that is across
each value of vein width (rmin). We focused our analysis on three
statistics–vein density (VD), minimum spanning tree ratio
(MST), and loop elongation ratio (ER) (Table 3) – previously
identified as key traits to describe venation architecture (Blonder
et al., 2018, 2020).

Extensive quality control steps, including additional
hand-tracing in some samples, followed standard protocols,
ensuring the accuracy of the segmented networks and the multi-
scale statistics. Architecture traits could not be obtained for two
species (Aucuba japonica Thunb. and Nymphaea sp.) because che-
mical treatments failed to properly digest nonvenation tissues. In
seven monocot species, leaves were too long (> 30 cm) to be fully
processed, so a leaf segment representing c. 20–50% of the total
leaf area was analyzed.

Statistical analysis

To evaluate whether species in different clades and/or veins at dif-
ferent sizes occupy different portions of the architecture-function
space (Goal 1), we carried out a principal component analysis
(PCA) with all traits. Before the PCA, we imputed missing values
(Methods S1) using a Bayesian hierarchical probabilistic matrix
factorization (BHPMF; Schrodt et al., 2015). BHPMF imputes
values based on the taxonomic hierarchy and correlation structure
within the trait matrix. Briefly, we log10- and z-transformed all
trait values, performed 50 imputations (Table S2), filtered out
implausible values, and then calculated the mean and SD of the
imputed values. To validate the imputation, we regressed original
vs imputed values and evaluated the R2 (Methods S1). Next,
venation traits (VD, ER, and MST) were binned into 50 rmin

bins, spanning 0.01 mm (rmin< 0.01 mm, veins too small to be
distinguishable) to 0.5 mm (rmin> 0.5 mm, too few veins
sampled, see Fig. S2). Finally, trait values were centered and
scaled (z-transformed) to improve comparability and reduce bias

Fig. 2 Hypothesized combinations of leaf
venation architecture traits (ER, loop elongation
ratio; MST, minimum spanning tree ratio; VD,
vein density) at three vein spatial scales (small,
medium, and large) that would have evolved if
each leaf functional axis was independently
optimized: (a) Radar chart of hypothesized trait
combinations. (b) Damage resistance to drought
should be higher in networks with lower density
of large veins (low VDlarge), branching large and
medium veins (low MSTlarge and MSTmedium),
and more circular loops in small veins (low
ERsmall); (c) Damage resistance to herbivory
should be higher in networks with higher large
vein density (high VDlarge) and more circular
loops at all scales (low ER); (d) Damage resilience
to drought and herbivory should be higher in
networks with higher density of large and small
veins (high VDsmall and VDlarge), palmate
venation (more than one midrib), and more loops
(low MST) at all scales; (e) Flow efficiency should
be higher in networks with higher density (high
VDsmall) of branching (high MSTsmall) small veins;
(f) Mechanical support should be higher in
networks with higher large vein density (high
VDlarge) and more loops in small veins (low
MSTsmall); and (g) Construction cost should be
higher in networks with higher density (high
VDlarge and VDmedium) of large and medium
veins.
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toward traits with higher variance. VD and ER were also square-
root-transformed to improve normality. The broken-stick
method was used to determine the principal components to be
retained. The retained principal components were visualized
using 95% confidence ellipses at each clade and at each rmin.

To quantify the contribution of architecture traits to each func-
tion (Goal 2), we fitted gradient boosting machine (GBM) mod-
els. GBM is a machine-learning ensemble method that effectively
captures complex nonlinear interactions between predictor vari-
ables (Natekin & Knoll, 2013). We fitted our models using one
functional trait at a time as the response variable, and clade plus
architecture traits as predictor variables. To make an interpretable
assessment of the contribution of architecture traits at different
spatial scales, we binned VD, MST, and ER at three scales to
represent small, medium, and large veins. Because the range of
vein sizes vary across leaves, we used two complementary
approaches (scaled and unscaled rmin) to classify veins into size
categories (Methods S1), allowing us to investigate how both rela-
tive (scaled rmin) and absolute veins sizes (unscaled rmin) influence
architecture-function trade-offs. To fit each GBM, we split data
80%/20% between training and test sets. Then, we used the
h2o.automl function as implemented in the h2o R-package to per-
form a hyperparameter search over the GBM parameters. To pre-
vent model overfitting, hyperparameter tuning was done with a
maximum running time of 30 s and a threefold cross-validation.
Model performance was assessed using root-mean-square error
(RMSE), and the best model (lowest RMSE) for each functional
trait was selected using the function h2o.get_best_model. From each
best model, we obtained the total variance explained as an estimate
of the contribution of venation architecture traits to each func-
tional axis (Goal 2). Due to the lower sample size (n= 32), GBM
models for P50 and P88 were fitted using both the complete-case
and the BHPMF-imputed datasets. To account for the uncertainty
around the imputed values, we ran 50 GBM models for P50 and
P88, using imputed values obtained in each of the 50 imputations.
We report the GBM results averaged across those iterations.

To identify which architecture traits at which scale predict leaf
functions (Goal 3), we obtained the influence value of each predic-
tor variable in each best GBM model. Variable influence was
obtained using both permutation importance and SHapley Additive
exPlanation (SHAP) values (Štrumbelj & Kononenko, 2014). Vari-
able importance, ranging from 0 (lowest importance) to 1 (highest
importance), was determined using the h2o.varimp function, which
measures the increase in the model RMSE after variable values are
permuted. To compare the importance of predictor variables
between the best model and the other GBM models fitted with the
same data, we used the function h2o.varimp_heatmap, which pro-
duces a heatmap of variable importance across multiple GBMmod-
els. SHAP values were determined using h2o.predict_contributions
function, and they measure the impact of every predictor variable
on the model prediction for each instance of the data. Thus, predic-
tor variables with larger absolute SHAP values have a larger contri-
bution to explain the response variable.

To determine how architecture traits across scales interact to
predict leaf functions (Goal 4), we measure the strength of pair-
wise interactions using the H-statistic (Friedman &

Popescu, 2008), as implemented in Interaction$new from the iml
R-package. H-statistics measure how much of the variation of the
predicted outcome depends on a given pairwise interaction and
vary from 0 (no interaction) to 1 (100% of variance is due to
interactions).

To test for differences in functional traits across plant clades,
and to test our hypothesis H3c (Table 2) that resilience varies
across venation types (parallel, palmate, and pinnate), we used
phylogenetic ANOVA tests followed by post hoc pairwise tests
with Benjamini & Hochberg (1995) P-value adjustments. Phylo-
genetic ANOVA tests were implemented following Garland Jr.
et al. (1993) using the function phyloANOVA from the PHYTOOLS

R-package. All analyses were carried out using R v.4.3.1 (R Core
Team, 2023). R code to reproduce all analyses is available at:
https://github.com/ilamatos/venation_tradeoffs/.

Results

Leaf functional and architecture traits vary across species
and scales

We found substantial variation in functional traits across species
(Tables S1–S3). For example, LMA varied c. 15-fold across spe-
cies (from 18.91 to 276.20 g m�2), while K leafmax

varied c.
232-fold (from 0.15 to 34.83 mmol m�2 s�1 MPa�1). SWPmidrib

was on average (226.08 kJ m�2 m�1) c. 2× higher than
SWPlamina (128.83 kJ m�2 m�1). By contrast, SWSlamina

(6309 J m�2) and εlamina (78.77 MN m�2) were on average c. 3×
higher than SWSmidrib (2316 J m�2) and εwhole (28.66 MN
m�2). When leaf midrib(s) and lamina were damaged, K leafmax

decreased on average by c. 55%. However, some species (n= 11)
experienced an increase in ΔK leafmean

(from 0.07% up to c.
295%). When we applied phylogenetic ANOVA tests to compare
functional traits across clades, we found significant differences
only in SWSlamina, which was lower in basal eudicot species
(Fig. S3).

Architecture traits demonstrated high variation among species
and clades (Figs S4–S6), and complex patterns across vein sizes.
As rmin increased, VD decreased (Fig. S4) and MST increased
(Fig. S5), whereas ER peaked at intermediate rmin values
(Fig. S6), reflecting a tendency of more veins and loops at smaller
spatial scales, and more elongated loops at medium-sized veins.

Leaf architecture-function trade-offs are in general weak

Principal component analysis identified three significant axes
(Fig. S5), which cumulatively explained 44% of the total
variation (Figs 3, S8), suggesting weak generalized architecture-
function trade-offs across vein scales and plant phylogeny.
Despite the fundamental differences in drought- and herbivory-
induced damages (the former can spread across the network while
the latter may not), resistance to both factors covaried along the
first principal component (PC1, Fig. 3). Leaves on the left PC1
side have high resistance against both herbivory (higher SWP)
and drought (more negative P88), while leaves on the right
PC1 side have low resistance (Tables S4, S5). Architecture
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traits had a low contribution to PC1 (Table S4). PC2 reflected a
network architecture-support axis (Fig. 3). Leaves at the upper
PC2 axis are more elastic (lower ε) and have a high density
(higher VD) of small veins (lower rmin) forming circular loops
(lower ER and MST), while leaves at the bottom PC2 axis show
an opposite combination of traits. PC3 further reflected the
trade-off between VD and MST (Fig. S8). Fern species spread
along PC1, reflecting their broad range of drought and herbivory
resistances, whereas monocots spread along PC2 reflecting the
existence of different venation architectures (e.g. parallel and pal-
mate) within this clade (Fig. 3). Vein sizes (rmin) differentiated

along PC2 (Fig. 3) and PC3 (Fig. S8), reflecting the tendency of
small veins (lower rmin) to have higher density and more circular
loops.

Venation architecture traits contribute to leaf support, cost,
and resistance

Architecture traits plus clade explained half or more of the total
variance (Fig. 4) for traits describing mechanical support, cost,
and resistance but had a lower explanatory power for determining
leaf resilience and efficiency. Except for Phe and SWSmidrib, the

Fig. 3 First (PC1), second (PC2), and third (PC3)
principal components of leaf venation
architecture (VD, MST, ER, colored in red) and
functional traits (Kleafmax

, P50, P88, ISI, SWPmidrib,
SWPlamina, SWSmidrib, SWSlamina, ΔKleafmean

, εwhole,
εlamina, LMA, Phe, colored in black) across 50 bins
of vein width sizes (rmin). In panels (a, c, e, g), the
95% confidence ellipses enclose the data at each
plant phylogenetic clade (ferns, basal
angiosperms, monocots, basal eudicots, rosids,
and asterids), or at each vein spatial scale (rmin).
Panels (b, d, f, h) show the principal component
analysis loadings. Note that leaf architecture
traits (shown in red) vary across vein sizes (rmin),
while functional traits (shown in black) do not.
The main loadings for PC1, PC2, and PC3 are
shown in bold. Other trait loadings are numbered
from 1 to 9. Parenthetical values indicate the
percentage variance explained by the three first
principal component axes. Trait abbreviations:
ER, elongation ratio; ISI, Implosion safety index;
Kleafmax

, maximum leaf hydraulic conductance;
LMA, leaf mass per area; MST, minimum
spanning tree ratio; P50, leaf water potential
inducing 50% loss of Kleafmax

; P88, leaf water
potential inducing 88% loss of Kleafmax

; Phe,
Phenol content; SWP_L, specific work to punch
the leaf lamina; SWP_M, specific work to punch
the midrib; SWS_L, specific work to shear the
lamina; SWS_M, specific work to shear the
midrib; VD, vein density; ΔKleaf , mean change in
Kleafmax

after damaging the leaf lamina and
midrib; ε_L, leaf flexural modulus of elasticity for
the leaf lamina; ε_W, leaf flexural modulus of
elasticity for the whole leaf.
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variance explained was similar in models using absolute (unscaled
rmin) and relative (scaled rmin) vein sizes. For P50 and P88, var-
iance explained was higher in models ran with complete-case
(Fig. 4), than with imputed trait values (R2: P50scaled = 0.30;
P50unscaled = 0.32; P88scaled = 0.23; P50unscaled = 0.62). Tables S6 and
S7 show hyperparameters values for the best selected models
and performance metrics for all GBM models, respectively.

Venation architecture contribution to leaf function vary
across spatial scales

Architecture traits at different spatial scales contributed to differ-
ent leaf functions (Fig. S9). Overall, clade was not ranked as an
important variable to explain variation in most of the functional
traits, suggesting that architecture-function trade-offs vary more
within rather than between clades. The order of predictor vari-
ables’ importance changed between GBM models based on the
absolute or relative vein sizes (Fig. S9), and between different
GBM models fitted using the same data (Figs S10, S11). But, in
most cases, the direction of the predictor variables’ effect on the
response variable was similar across different models.

The impact of each predictor variable on each functional trait
is displayed in the SHAP summary plots (Figs 5, S12, S13). In
the SHAP plot, each point represents an instance of data (i.e. one
species). The point color indicates the normalized value of the
corresponding predictor variable, with pink indicating high
values and blue indicating low values. The y-axis shows the top
five (from top to bottom) predictor variables most important to
explain the response variable. The x-axis represents the SHAP
contribution values. SHAP signal indicates whether the predictor
variable increases (SHAP > 0) or decreases (SHAP < 0) the
response variable, while SHAP magnitude measures how strong
this positive or negative impact is. Thus, a SHAP value around
zero indicates that the predictor variable has an irrelevant effect
on the response variable, while a larger absolute SHAP value indi-
cates a greater effect. For example, in Fig. 5(c), loop elongation
in small veins (ERsmall) followed by MSTmedium and MSTlarge

were the three most important variables to explain interspecific
variation in leaf resistance to herbivory described as SWPlamina.
Species with more elongated loops in small veins (i.e. higher
ERsmall indicated by the pink-colored points on the right side of
the ERsmall row) tend to exhibit higher resistance to herbivory
(higher SWPlamina indicated by the more positive SHAP values).
Additionally, species with more loops on medium size veins (i.e.
lower MSTmedium indicated by the blue-colored points) are asso-
ciated with higher SWPlamina values (more positive SHAP
values). By contrast, species with more loops in large size veins
(i.e. lower MSTlarge) are associated with lower SWPlamina (more
negative SHAP values). Those results only partially support our
hypothesis (H2), as we found no strong evidence that higher den-
sity of large veins contributes to higher resistance to herbivory
(Figs S12, S13). Phe was associated with networks of higher vein
density and more circular loops at all scales (Figs S12, S13). Con-
trary to H2c, we found no evidence that high investment in sec-
ondary chemistry offsets investment in physical defense provided
by the lignified network.

Contrary to our expectations (H1a and H1c), resistance to
drought was higher in networks with higher density of larger
veins and with intermediary values of ER (Figs 5a, S12, S13). As
expected (H1b), more tree-like small veins resulted in higher
resistance to drought, but this effect was weak. Because of the
greater uncertainty associated with the imputed P50 and P88
values (Table S2), when we averaged the results across the 50
GBM imputed-based models, we basically found no clear effect
of venation architecture traits on drought resistance (Fig. S14).

Resilience was higher in networks with higher density of large
veins and either high or low density of small veins, thus partially
supporting H3a (Figs 5d, S12, S13). ΔK leafmean

was also higher in
networks with intermediate values of ERmedium and ERlarge, more
loops in large veins, and more branching minor veins, thus par-
tially supporting H3b. Contrary to H3c, we found no significant
differences in ΔK leafmean

(F= 0.2322, P-value= 0.906), ΔK leafmidrib

(F= 0.3716, P-value= 0.841), or ΔK leaf lamina
(F= 0.0802,

P-value= 0.968), between palmate, pinnate, and parallel leaves.
As hypothesized (H4a), flow efficiency was higher in networks

with higher density of small veins (Figs 5b, S12, S13). However,
higher K leafmax

was found in networks with intermediate, rather

Fig. 4 Results of gradient boosting machine (GBM) assessing variation in
architecture (predictor variables) and functional (response variables) trade-
offs across vein spatial scales (small, medium, and large veins) and plant
phylogeny (clade). The total percentage of variance explained by the best
GBMmodel indicates how much the variance in venation architecture
traits across species contribute to explain the variance in 13 leaf functional
traits (P50, P88, ISI, SWPmidrib, SWPlamina, SWSmidrib, SWPlamina, ΔKleafmean

,
Kleafmax

, εwhole, εlamina, LMA, Phe) describing six functional axes (resistance
to drought, resistance to herbivore, resilience, flow efficiency, mechanical
support, and construction cost). All models were run with complete-case
dataset and either with scaled (scaled rmin) or unscaled (unscaled rmin) vein
sizes. Trait abbreviations: ISI, Implosion safety index; Kleafmax

, maximum
leaf hydraulic conductance; LMA, leaf mass per area; P50, leaf water
potential inducing 50% loss of Kleafmax

; P88, leaf water potential inducing
88% loss of Kleafmax

; Phe, Phenol content; SWPlamina, specific work to
punch the leaf lamina; SWPmidrib, specific work to punch the midrib;
SWSlamina, specific work to shear the lamina; SWSmidrib, specific work to
shear the midrib; ΔKleafmean

, mean change in Kleafmax
after damaging the leaf

lamina and midrib; εlamina, leaf flexural modulus of elasticity for the leaf
lamina; εwhole, leaf flexural modulus of elasticity for the whole leaf.
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than low MSTsmall and more elongated loops in medium and
large veins.

Mechanical support was higher in networks with more looping
small veins and higher large vein density, although in some spe-
cies high VDlarge was associated with lower εwhole, thus only par-
tially supporting H5a. The presence of elongated loops in
medium veins was also important to explain ε in our dataset
(Figs 5e, S12, S13). Note that those relationships were highly
influenced by a few monocot species with parallel venation and
high elasticity. As expected (H6a), construction cost was higher
in leaf networks with higher vein density, but this effect was not
particularly strong for large veins (Figs 5f, S12, S13). Fig. 6 sum-
marizes the results for the architecture-function trade-offs across
the six leaf functional axes.

Venation architecture traits across spatial scales interact
weakly to regulate leaf function

Overall, pairwise interactions between predictor variables were
weak (Fig. S15), with H-statistic < 0.3 (Table S8), suggesting
low integration across architecture traits at different vein orders.

Fig. S15 shows the strongest interactions in our dataset for the
GBM models with scaled and unscaled rmin, respectively.

Discussion

Overall, we found that: (1) generalized leaf architecture-function
trade-offs across vein spatial scales and plant phylogeny are weak;
(2) architecture traits play a stronger role on leaf mechanical sup-
port and damage resistance, than on flow efficiency and damage
resilience; (3) architecture traits at different spatial scales contri-
bute to different leaf functions, which potentially reduces the
necessity of trade-offs among functional axes driven by venation
architecture; and (4) pairwise interactions between architecture
traits both at a single scale (e.g. VDlarge × ERlarge) and across spa-
tial scales (e.g. VDsmall × VDlarge) are weak, reflecting no wide-
spread trade-offs among different aspects of network architecture.

Those results suggest that given the existence of different con-
straints (e.g. biophysical, physiological, and phylogenetic) leaf
venation networks reflect a compromise among multiple compet-
ing functions (Ronellenfitsch et al., 2015; Patino-Ramirez &
Arson, 2020). This means that no single optimal venation

Fig. 5 SHapley Additive exPlanations (SHAP)
summary plots for six leaf functional axes. SHAP
values measure the impact of predictor variables
(i.e. plant clades and vein density (VD), loop
elongation ratio (ER), and minimum spanning
tree ratio (MST) at three spatial scales – large,
medium, and small) on the response variables
(leaf functional traits) considering the interactions
between predictors. (a) Resistance to drought –
P50 (leaf water potential inducing 50% decline in
leaf hydraulic conductance), (b) Efficiency –
Kleafmax

(maximum leaf hydraulic conductance),
(c) Resistance to herbivory – SWPlamina (specific
work to shear leaf lamina), (d) Resilience –
ΔKleafmean

(percentage decline in leaf hydraulic
conductance after damage), (e) Mechanical
support – εlamina (leaf flexural modulus of
elasticity for the leaf lamina), (f) Construction
cost – leaf mass per area. Note that this figure
only presents SHAP values for the top five most
important predictor variables, and for just one
functional trait per functional axis. Complete
SHAP summary plots for all 13 functional traits
measured in this study are shown in Fig. S11. All
results present here were run with complete-case
dataset and unscaled rmin (i.e. absolute vein
sizes), for the scaled rmin (i.e. relative vein sizes)
results, see Fig. S12. For traits abbreviations, see
Table 1.
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network exists, but instead, there might be multiple trait combi-
nations or alternative designs of network architectures (Wain-
wright, 2005; Marks & Lechowicz, 2006) that can be deployed
to achieve equivalent overall functioning. The independence of
venation architecture traits within and across vein spatial scales,
reflected by the weak pairwise interactions in our dataset, could
allow more freedom for adjusting traits and functioning to the
environment (Li et al., 2015; Méndez-Alonzo et al., 2019). This
perspective contrasts with prior conclusions about leaf venation
in which it was proposed that single functions were optimized
(Sack & Tyree, 2005; Zwieniecki et al., 2006; Noblin
et al., 2008; Deans et al., 2020) and reinforces recent ideas about
the high dimensionality of adaptation in plants (Baraloto
et al., 2010; He et al., 2020). This means that species may achieve
similar levels of function in the same environment despite dissim-
ilar venation architectures. Because leaf functions are determined
not only by network architecture but also by multiple biochem-
ical, anatomical, morphological, and physiological venation and
nonvenation traits operating at different spatial scales (Table 2),
there could be numerous trait combinations yielding similar
functioning. Each leaf represents the realization of one viable
combination among those multiple possibilities. Thus, it is not
surprising that we failed to identify strong and widespread
architecture-function trade-offs across the plant phylogeny.
Nevertheless, we did find clear linkages between venation archi-
tecture and leaf functions, particularly for mechanical support,
damage resistance, and cost. We discuss how variation in key
venation architecture traits across spatial scales influence each leaf
functional axis independently, even though leaf networks are
likely selected for achieving sufficient performance in each func-
tional axis, rather than an optimum performance in any single
function.

Influence of venation architecture on each leaf function

Damage resistance to drought: Although larger veins seem to be
more prone to embolisms (Brodribb et al., 2016; Scoffoni
et al., 2017b), we found that networks with a higher density of
larger veins may be more resistant to drought. This result was
supported by previous empirical studies (Scoffoni et al., 2011;
Nardini et al., 2014; Xiong & Flexas, 2022) and could be
explained by the concept of relative leverage between veins
(Sack & Scoffoni, 2013). When VDlarge is higher, large veins
have less leverage relative to the small vein system, and embo-
lisms in major veins should cause a smaller decrease in Kleaf.
Conversely, when VDsmall is higher, large veins gain leverage,
and embolisms in large veins should cause great loss of conduc-
tance. Therefore, since embolisms typically begin in the largest
veins and progresses into smaller ones (Brodribb et al., 2016;
Scoffoni et al., 2017b), a higher VDlarge is likely more effective
for reducing overall leaf hydraulic vulnerability to drought than
a higher VDsmall (Sack & Scoffoni, 2013). Thus, despite the
overall trend of independence among architecture traits, in some
circumstances, a coordination in network architecture across
spatial scales could be important to maximizing some leaf func-
tions (Kawai & Okada, 2018).

Damage resistance to herbivory was overall higher in networks
with small veins forming circular loops (lower ERsmall and
MSTsmall), corroborating the hypothesis that reticulation in small
veins can increase deterrence against chewing/cutting damage by
providing more ways to stop the propagation of mechanical frac-
tures (Niklas, 1999; Fiorin et al., 2016). However, contrary to
previous studies, we found no evidence that a higher density of
large veins increases damage resistance to herbivory (Sack
et al., 2008; Kitajima & Poorter, 2010; Kawai & Okada, 2016)
nor that a high investment in chemical defense can offset invest-
ment in mechanical resistance by the lignified network (Blonder
et al., 2020; Duarte et al., 2023). Importantly, we did not directly
measure herbivory attack nor did we quantify other secondary
metabolites important for chemical defenses against herbivory, so
those hypotheses cannot be completely ruled out.

Mechanical support was largely explained by venation architec-
ture features, and higher in networks with higher density of larger
veins and more looping small veins. Those results corroborate
previous studies showing that larger and more sclerified veins can
increase leaf stiffness (Onoda et al., 2015; Kawai & Okada, 2016)
as they act as beams that support the leaf weight (Niklas, 1999),
while more reticulated small veins can increase stiffness by pro-
viding reinforcing cross-linkages that resist mechanical loading
(Niklas, 1999; Roth-Nebelsick et al., 2001). Importantly, in our
dataset, the architecture-function trade-offs along the mechanical
support axis were largely influenced by monocot species with par-
allel venation and stiff leaves. In those species, the parallel
arrangement of the large veins, reinforced with small transverse
veins, leads to a very efficient stabilization of the leaf against
bending forces (Roth-Nebelsick et al., 2001). We also found a
novel result that more elongated medium veins increase leaf stiff-
ness, perhaps because they form cross-links between primary and
secondary veins, helping to stabilize the whole leaf in the same
way that triangular trusses stabilize bridges.

Construction cost was associated with high densities of both
small and large veins, indicating that even though minor veins
usually occupy a small volume inside the leaf (Sack & Scof-
foni, 2013), they may still impact the final leaf cost, probably due
to their more than fourfold higher tissue density compared with
mesophyll and epidermis tissues (Poorter et al., 2009). Those
results contradict previous studies showing that leaf construction
cost and the densities of both major and minor veins form inde-
pendent axes (Kawai & Okada, 2020). Our work, based on a lar-
ger and more phylogenetically diverse dataset, suggests that
venation architecture features are important in explaining varia-
tion in leaf cost across species, and do not form independent axes
in the architecture-function space.

Damage resilience: Overall, venation architecture traits had a
low contribution to this functional axis. Resilience was slightly
higher in networks with a high density of looping large veins.
This architecture design may increase resilience by providing
more redundant pathways for continued long-distance flow after
damages (Sack et al., 2008; Katifori et al., 2010). More loops in
small veins, however, decreased resilience, probably because too
much reticulation in small veins can lead to a faster spread of
embolisms (Loepfe et al., 2007; Mrad et al., 2021). By contrast,
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less reticulation may increase resilience by restricting damages to
a single conduit or group of conduits (Sack & Scoffoni, 2013)
and maybe also by facilitating embolism repair (Schenk
et al., 2008). Therefore, optimal architecture for resilience may

occur when networks combine high redundancy (more loops) in
major veins with high sectoriality (less loops) in minor veins. In
contrast to Sack et al. (2008), we found no difference in resilience
between palmate, pinnate, and parallel leaves. This is probably
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because Sack et al. (2008) only damaged the midvein of pal-
mately veined species, while we severed all midribs, canceling out
any extra redundancy provided by having multiple primary veins.
In both studies, treatments were an explicitly mechanical simula-
tion of herbivory and did not include chemical signaling path-
ways (Waterman et al., 2019) that may impact Kleaf changes in
response to herbivory.

Flow efficiency was only weakly influenced by venation archi-
tecture, suggesting that leaf hydraulics might be highly controlled
by venation anatomical traits or outside-venation traits (Carin-
gella et al., 2015; Xiong & Flexas, 2022; Scoffoni et al., 2023).
Theoretically, venation networks with high MSTsmall (i.e. tree-
like minor veins) should achieve the highest water supply rate for
a given investment of veins in the absence of damages (Cor-
son, 2010; Katifori et al., 2010). In our study, however, higher
K leafmax

was found in networks with intermediate MSTsmall, per-
haps because real leaves are constantly subjected to damage, and
so they need to optimize not only the flow efficiency, but also
resilience/resistance to damages. Importantly, flow efficiency may
be more related to the architecture traits of very minor veins (i.e.
veins with width< 0.01 mm), which were missing in our dataset.
This could be another reason for the weak relationships between
flow efficiency and venation architecture in our study.

Limitations and future directions

In this study, we were unable to assess veins with width< 10 μm.
Thus, our estimation of small vein features’ contribution to leaf
functions may be biased. Future work should merge venation
architecture statistics estimated from high-resolution images of
whole leaves with those obtained from microscopic images of leaf
subsections to better assess traits at different vein spatial scales.
Another limitation is that our P50 and P88 values obtained using
the EFM method cannot differentiate Kleaf declines caused by
xylem embolisms from those caused by changes in the permeabil-
ity of outside-xylem tissues (Sack & Scoffoni, 2012). Further-
more, due to methodological issues related to sample size (i.e. P50
and P88 were only measured on 32 out of 122 species), our results
linking venation architecture and resistance to embolisms are
provisional and need to be further explored. To better quantify
the contribution of venation features to damage resistance during
drought, future research should combine different methods that
quantify how both inside- (Brodribb et al., 2016; Scoffoni
et al., 2017a) and outside-xylem changes (Scoffoni et al., 2023)
influence the whole-leaf resistance under increasing water stress.

Conclusions

Variation in leaf venation architecture features across spatial
scales was important to determine different leaf functions, espe-
cially mechanical support, damage resistance, and cost. However,
due to the high dimensionality of the functional space, general-
ized leaf architecture-function trade-offs across the plant phylo-
geny were weak. Multiple combinations of venation and
nonvenation traits were found to achieve equivalent functional
performance. The absence of generalized rules linking leaf
architecture-function observed here challenges prior studies that
have proposed simple and generalizable models of leaf function-
ing. To further understand the rules linking leaf network archi-
tecture and function, future studies should focus on (1)
quantifying the contribution of both inside- and outside-xylem
traits on the different leaf functional axes, particularly damage
resilience and flow efficiency; (2) investigating whether alterna-
tive metrics of network architecture not assessed here (e.g. vein
orientation and connectivity, Mrad et al., 2021) may have stron-
ger functional linkages; (3) constructing mechanistic models (e.g.
Buckley et al., 2017) to determine the venation network architec-
tures that are optimal under selection for different combinations
of functions and costs; and (4) identifying the macroevolutionary
causes of variation in network architecture across clades.
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