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1 Introduction

Trees achieve a large range of sizes, varying in radius from 0 − 4 meters, in height from
0 − 98 meters, and in mass from approximately 0.001 - 10000000 kg. But in spite of this
wide range, trees seem to obey scaling laws: we do not expect to find a 50 m high tree
with a 10 cm radius trunk, nor a 10 cm high tree with a 50m radius. As trees get wider,
they also get taller, apparently in a very special way. Why is this? In this module we will
explore how small trees become big through the framework of a scaling analysis.

There are many reasons for trees to become tall. One important reason is light compe-
tition: the tallest trees can capture the most light for photosynthesis, and prevent shorter
trees from getting much light at all. This tall-strategy can increase reproductive success.
However, being tall isn’t always a good thing: tall trees must invest resources in building
trunks, and may be at higher risk of dying in storms unless those trunks are sufficiently
strong to survive damage. You should be able to think of many other costs and benefits
of size that influence the scaling relationship between tree radius and tree height.

Independent of these evolutionary cost/benefit arguments, there are also physical laws
that apply to trees that can constrain the scaling of radius and height. We are going to
explore two mechanical principles today. So what could cause this tree to fail? To start
off, let’s simplify a tree as a column of radius r, height h, and density ρ. The total volume
of our tree is then πr2h and the total weight of the tree is ρ · g · πr2h, where g is the
acceleration of gravity (9.8 m · s−2).

1.1 Compressive failure

First, let’s imagine the tree were so heavy that it would be unable to support its own
weight. You can imagine a tree made of Jello - being a rather weak material, a large
enough column of the stuff would eventually cause the tree to collapse under itself. This
is called compressive failure. Can this explain the scaling of tree radius and height?
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Compressive failure occurs when the object’s weight exceeds the maximum force the mate-
rial can provide. Intuitively, an object with twice the area should be able to survive twice
the force applied to it. This is true - this force is the product of the object’s area and
its maximum sustainable pressure, or compressive strength, which we will represent as
σc. We can now write an equation for how big a tree has to be before compressive failure
occurs. As before, the tree’s weight is ρ · g · πr2h. The maximum compressive force is
σc · πr2. Equating these two forces, we get

ρ · g · πr2h = σc · πr2
ρ · g · h = σc

h = σc/ρg
(1)

Something very interesting happened here - the tree radius is nowhere to be found in
the final equation! If compressive failure alone controlled tree scaling, then tree height
would have nothing to do with tree radius. The world would be filled with tall and skinny
trees, tall and fat trees, short and skinny trees, and short and fat trees. Clearly there is
more to the story than just compressive failure.

By the way, this equation does set an upper limit on how tall any tree could ever be.
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For wood, σc ≈ 4.5×107 kg ·m−1 ·s−2 and ρ ≈ 800 kg ·m−3. Substituting in these numbers,
we obtain h = 5739m - a tree almost 15 Empire State Buildings tall! This is a too large of
a number - so what else could constrain tree size?

1.2 Buckling failure

Another way for a tree to fail is if its trunk bends and collapses. Imagine taping a plastic
straw to a table so it is pointing upward. If you press down on the top end, the straw
resists your force. But if you press down at any angle except the vertical, the straw bends
and then becomes unstable, finally collapsing. This is buckling. This might also happen
to trees - a gust of wind could apply a force that temporarily bends a tree, causing it to
become unstable and collapse under itself. The difference between the straw and the tree
is that in the first case, an external force caused the buckling to occur, while in the second
case, the weight of the tree alone caused the buckling to occur.

In this section, we are going to find a relationship between the radius of a tree and the
height at which it could spontaneously buckle.

x 

y(x) 

M 

Now consider a column that has bent a distance y(x) perpendicular from the vertical
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x-axis due to some force applied to it. We can describe the bending of a column using the
following approximate equation:

M = E · I · y′′(x) (2)

Here, M is the applied moment. E is the Young’s modulus (stiffness) of the material
and I is the something called the second moment of area, which measures the bigness of
the object. (And is not to be confused with the moment of inertia - the dimensionality is
different. Oddly the same symbol is used for both.) Finally, y′′(x) is the second derivative
of the displacement of the beam. You might notice that this equation, not accidentally, is
similar in form to Newton’s second law, F = ma. You can think of M as the force F , EI
as the inertial mass m, and y′′(x) as the acceleration a.

By solving this equation we’ll be able to understand how buckling might control tree
radius and height. To start, the applied moment M is defined as the product of a force
and a distance. We’re interested in the force of the tree’s weight, applied at the distance
the tree has bent. Thus,

M = −(ρ · g · πr2h) · y(x) (3)

(The negative sign comes because the force acts downward but the coordinate system
increases upward). Also, we can look up what I should be for a column of radius r. It
turns out that

I =
πr4

4
(4)

Fortunately, E is just a constant, so we’ll leave it alone for now. Let’s substitute these
equations into our equivalent of Newton’s second law:

M = E · I · y′′(x)
(−ρ · g · πr2h) · y(x) = E · πr44 · y′′(x)

−4ρgh
Er2

y(x) = y′′(x)
(5)

Which can be rewritten in the standard form

y′′(x) + k2y(x) = 0
k = (4ρgh

Er2
)1/2

(6)

This ordinary differential equation has the solution

y(x) = A sin kx+B cos kx (7)

for unknown constants A and B. We’re solving this equation for the the boundary con-
ditions y(x = 0) = 0 and y(x = h) = 0 - that is, when the tree has bent, but the top
and bottom ends have not yet moved. We know that once the tree bends, it collapses -
so we only need to find a solution for this simple case! If we substitute the first boundary
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condition, we obtain B = 0. If we then substitute the second condition, we find that
A sin kh = 0. This equation holds when the sine function has zeros, or when

kh = nπ (8)

where n can take on any non-negative integer value. n = 0 corresponds to an unbent tree;
n = 1 corresponds to one bend, n = 2 to two bends, etc. Under the constraint that the
tree’s mass must be symmetrically distributed around the vertical, n = 1 is forbidden, so
we will continue the analysis for n = 2.

Substituting in the definition of k and using n = 2, the last equation becomes

(4ρgh
Er2

)1/2h = 2π
4ρgh
Er2

h2 = 4π2

h3 = π2E
ρg r

2

h =
(
π2E
ρg

)1/3
r2/3

(9)

This is the equation we want. Buckling sets a scaling relationship between height and
radius. To avoid buckling, a tree must triple its radius in order to double its height. This
is a situation of diminishing returns - tall trees require disproportionately large trunks to
keep them from collapsing. Moreover, the overall scale of this relationship is set by the
ratio of E and ρg. Trees can become taller if they become stiffer (increased E), lighter
(lower ρ) or move to the Moon (lower g). This last option is sadly not possible! Note also
that unlike with compressive failure, this equation does not set an absolute limit on tree
height.

This equation looks complicated but can be rewritten to be more useful. If we log-
transform both sides, and then substitute average values for wood (E ≈ 1.0 × 1010 kg ·
m−1s−2, ρ ≈ 800 kg ·m−3) we obtain

log [h] = log
[(

π2E
ρg

)1/3
r2/3

]
log [h] = log

[(
π2E
ρg

)1/3
]

+ log [r2/3]

log [h] = 5.44 + 2
3 log [r]

(10)

According to this equation, a plot of log[h] against log[r] should yield a straight line
with slope 2/3 and intercept 5.44 when r and h are measured in meters.

In reality, the mathematics that describe the buckling of a column due to its own weight
are much more complex than what we’ve done here - we have linearized the curvature of the
beam and neglected the uniform distribution of weight along the column. The References
can point you to a more detailed solution. Interestingly, although the mathematics become
far harder, the final prediction only changes in scale by 10-30%, with the 2/3 power scaling
being preserved!
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2 Experiment

We will test the buckling prediction by measuring the empirical scaling relationship between
tree height and radius. You can measure tree radius by determining the circumference of
a tree’s trunk and dividing by 2π. It is standard to measure the circumference at breast
height, or at approximately 1 m above the ground. You can measure tree height by standing
a known distance d away from a tree and measuring the angle θ from your eye to the top
of the tree. Triangle trigonometry can show that the elevation from your eye to the tree
top is d tan θ. If the height from the ground to your eye is h0, then the total tree height is

h = h0 + d tan θ (11)

If you are standing on a slope, you will need to amend this equation to account for the
incline. Fortunately there are not many hills on campus. Remember to take all measure-
ments in meters!

h0 

h 

! 

d 

d 
ta

n!
 

We will provide you with a measuring tape and an angle measuring device (clinometer).
You are responsible for creating a useful data sheet. Record the height and radius of as
many different trees as you can. To avoid duplication of data, coordinate with other groups
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to choose unique locations to sample. We will create a group data file with everyone’s
measurements.

3 Analysis

Save the group data file as comma-separated-value file (CSV) with a header row. To load
this data into MATLAB, run

data_trees = dlmread('trees.csv', ',', 1, 0);
radius_trees = data_trees(:,1);
height_trees = data_trees(:,2);

Now log-transform the data and plot it:

logradius_trees = log(radius_trees);
logheight_trees = log(height_trees);
hold all;
plot(logradius_trees, logheight_trees, 'xk');

We also need to calculate and plot the log-transformed buckling prediction:

E = 10 * 10^9;
rho = 800;
g = 9.8;
theory_intercept = log((pi*pi*E/(1*rho*g))^(1/3));
theory_slope = 2/3;
theory_xrange = log(linspace(min(radius_trees), max(radius_trees)));
theory_yrange = theory_intercept + theory_slope * theory_xrange;
plot(theory_xrange, theory_yrange, '-r');

We can be do better than squinting at this graph by also estimating the best-fitting line
through the data. The most appropriate technique here is geometric (reduced major axis;
RMA) regression. Make sure you have downloaded gmregress.m and placed it in your
MATLAB working directory. Now use this code to estimate the slope and intercept of the
best-fitting line and plot them overlaid on the data:

[coef coef_confidence_intervals] = gmregress(logradius_trees, logheight_trees);
regression_xrange = log(linspace(min(radius_trees), max(radius_trees)));
regression_yrange = coef(1) + coef(2) * regression_xrange;
plot(regression_xrange, regression_yrange, '-b');

You should directly examine the values stored in coef and coef confidence intervals
to see how closely the data and the model match. Use the xlabel, ylabel, and legend
(or other) commands to annotate the final graph.
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Finally, download bigtrees.csv. This file contains data on height and radius from the
National Register of Big Trees. Modify your code to also plot this data and the best-fitting
line through it.

4 Discussion questions

1. How closely did the class’s data match the bigtrees data set? How could you explain
any differences?

2. Why do you think there is scatter in the data? How come all trees aren’t on one
single line?

3. Why is the buckling line higher than any of the data points? If it isn’t, how is that
possible?

4. Do you think buckling controls the scaling of tree size? What evidence do you have
from your data to support your viewpoint?

5. What options do trees have to reduce their risk of buckling? Look back at the
equation we derived - especially the part about the absolute scale factor.

6. We approximated a tree as a cylinder. What else might be important to understand
how tree size scales?

7. When would it be useful to know how tree size scales? Are there scientific, com-
mercial, or industrial applications of the relationship we derived? What other kinds
of things could our buckling scaling relationship apply to? (Hint - think beyond
biology!)

8. If elastic buckling doesn’t set an upper limit to tree height, what does? Take a look
at the Nature paper in the references.
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